- Простейшие тригонометрические уравнения
- Формулы корней тригонометрических уравнений в таблице
- Методы решения тригонометрических уравнений
- Решение линейных тригонометрических уравнений
- Решение тригонометрических уравнений методом замены переменной
- Алгебраический метод.
- Разложение на множители.
- Приведение к однородному уравнению
- Переход к половинному углу
- Введение вспомогательного угла
- Дробно-рациональные тригонометрические уравнения
- Комбинированные уравнения
- Примеры с решениями
- Пример №1
- Пример №2
- Пример №3
- Пример №4
- Пример №5
- Пример №6
- Пример №7
- Пример №8
- Пример №9
- Пример №10
- Пример №11
- Пример №12
Простейшие тригонометрические уравнения
Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.
- Уравнение `sin x=a`.
При `|a|>1` не имеет решений.
При `|a| leq 1` имеет бесконечное число решений.
Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`
Таблица арксинусов
- Уравнение `cos x=a`
При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.
При `|a| leq 1` имеет бесконечное множество решений.
Формула корней: `x=pm arccos a + 2pi n, n in Z`
Таблица арккосинусов
Частные случаи для синуса и косинуса в графиках.
- Уравнение `tg x=a`
Имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arctg a + pi n, n in Z`
Таблица арктангенсов
- Уравнение `ctg x=a`
Также имеет бесконечное множество решений при любых значениях `a`.
Формула корней: `x=arcctg a + pi n, n in Z`
Таблица арккотангенсов
Формулы корней тригонометрических уравнений в таблице
Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:
Методы решения тригонометрических уравнений
Решение любого тригонометрического уравнения состоит из двух этапов:
- с помощью тригонометрических формул преобразовать его до простейшего;
- решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.
Рассмотрим на примерах основные методы решения.
Решение линейных тригонометрических уравнений
Пример 2. Найдите корни уравнения
принадлежащие промежутку
Решение. Подобные уравнения решаются один весьма интересным, на мой взгляд, способом. Разделим обе части на
, уравнение тогда примет вид:
Подберем такое число, синус которого равен а косинус равен
Например, пусть это будет число . С учетом этого перепишем уравнение в виде:
Присмотревшись, слева от знака равенства усматриваем разложение косинуса разности и
Это и есть ключ к решению. Имеем:
Осуществляем отбор решений, входящих в промежуток :
Задача для самостоятельного решения №2. Найдите корни уравнения принадлежащие промежутку
Ответ:
Решение тригонометрических уравнений методом замены переменной
Пример 3. Дано уравнение
- Решите уравнение.
- Укажите корни, принадлежащие отрезке
Решение. Сразу оговорим ограничения, накладываемые на переменную в этом уравнении:
Откуда взялось это ограничение? Правильно, функция не существует при этих значениях
Используем замену переменной:
Тогда уравнение принимает вид:
Переходим к обратной замене:
Осуществляем отбор решений. Проведем его на этот раз с использованием единичной окружности.
Отбор корней с помощью единичной окружности
Из рисунка видно, что в интересующий нас промежуток входят только два значения из этих серий:
Обратите внимание на один существенный момент. На рисунке точки
и принадлежат оси тангенсов, а точки
и — единичной окружности. Очень важно понимать, зачем это нужно для решения данной задачи.
Ответ:
Задача для самостоятельного решения №3. Дано уравнение
- Решите уравнение.
- Укажите корни, принадлежащие отрезку
Ответ:
Алгебраический метод.
В этом методе делается замена переменной и ее подстановка в равенство.
Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`
Решение. Используя формулы приведения, имеем:
`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,
делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,
находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:
- `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.
- `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.
Разложение на множители.
Пример. Решить уравнение: `sin x+cos x=1`.
Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:
`sin x — 2sin^2 x/2=0`,
`2sin x/2 cos x/2-2sin^2 x/2=0`,
`2sin x/2 (cos x/2-sin x/2)=0`,
- `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
- `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.
Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.
Приведение к однородному уравнению
Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:
`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).
Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.
Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.
Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:
`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,
`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`
`sin^2 x+sin x cos x — 2 cos^2 x=0`.
Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:
`frac {sin^2 x}{cos^2 x}+frac{sin x cos x}{cos^2 x} — frac{2 cos^2 x}{cos^2 x}=0`
`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:
- `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
- `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.
Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.
Переход к половинному углу
Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.
Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`
`4 tg^2 x/2 — 11 tg x/2 +6=0`
Применив описанный выше алгебраический метод, получим:
- `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
- `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.
Введение вспомогательного угла
В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:
`frac a{sqrt {a^2+b^2}} sin x +` `frac b{sqrt {a^2+b^2}} cos x =` `frac c{sqrt {a^2+b^2}}`.
Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a{sqrt {a^2+b^2}}=cos varphi`, ` frac b{sqrt {a^2+b^2}} =sin varphi`, `frac c{sqrt {a^2+b^2}}=C`, тогда:
`cos varphi sin x + sin varphi cos x =C`.
Подробнее рассмотрим на следующем примере:
Пример. Решить уравнение: `3 sin x+4 cos x=2`.
Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:
`frac {3 sin x} {sqrt {3^2+4^2}}+` `frac{4 cos x}{sqrt {3^2+4^2}}=` `frac 2{sqrt {3^2+4^2}}`
`3/5 sin x+4/5 cos x=2/5`.
Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:
`cos varphi sin x+sin varphi cos x=2/5`
Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:
`sin (x+varphi)=2/5`,
`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,
`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.
Дробно-рациональные тригонометрические уравнения
Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.
Пример. Решить уравнение. `frac {sin x}{1+cos x}=1-cos x`.
Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:
`frac {sin x}{1+cos x}=` `frac {(1-cos x)(1+cos x)}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {1-cos^2 x}{1+cos x}`
`frac {sin x}{1+cos x}=` `frac {sin^2 x}{1+cos x}`
`frac {sin x}{1+cos x}-` `frac {sin^2 x}{1+cos x}=0`
`frac {sin x-sin^2 x}{1+cos x}=0`
Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.
Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.
- `sin x=0`, `x=pi n`, `n in Z`
- `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.
Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.
Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.
Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!
Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.
Комбинированные уравнения
При решении уравнений этого типа важно обращать внимание на область допустимых значений входящих в него переменных. Именно поэтому составители вариантов ЕГЭ не просят учеников осуществлять отбор решений из полученных серий ответов. Решение этих уравнений само собой подразумевает выполнение данной математической операции.
Пример 5. Решите уравнение:
Решение. Данное уравнение эквивалентно следующей системе:
Обратите внимание! Писать, что
нет никакой необходимости, поскольку по условию это выражение равно выражению
которое, в свою очередь, больше или равно нулю.
Решаем первое уравнение системы:
Нужно, чтобы
поразмыслив, понимаем, что поэтому из полученной серии ответов нам подходят только
Ответ:
Задача для самостоятельного решения №5. Решите уравнение:
Показать ответОтвет:
Пример 6. Решите уравнение:
Решение. Данное уравение равносильно системе:
Тригонометрическая функция синус положительна в первой и второй координатной четвертях, поэтому из полученных серий выбираем только эту:
Раз уж мы с этим столкнулись, не лишним будет повторить, какие знаки принимают тригонометрические функций в различных координатных четвертях:
Знаки функций, входящих в тригонометрические уравнения, по координатным четвертям
Ответ:
Задача для самостоятельного решения №6. Решите уравнение:
Показать ответОтвет:
Пример 7. Решите уравнение:
Решение. Область допустимых значения уравнения определяется условием:
то есть
Разобьем решение на два случая:
- Пусть
тогда уравнение принимает вид:
Последнее равенство неверно, поэтому в данном случае решений у уравнения не будет.
- Пусть
тогда уравнение принимает вид:
Условию
удовлетворяет только последняя серия.
Ответ:
Задача для самостоятельного решения №7. Решите уравнение:
Ответ:
Примеры с решениями
Пример №1
Решить уравнение
Решение:
По формуле (4) находим
где
Отсюда следует, что
Пример №2
Решить уравнение
Решение:
Согласно формуле (2) получаем
откуда
Так как правая часть этого равенства должна быть неотрицательной, то
может принимать только значения
Отсюда находим
Пример №3
Решить уравнение
Решение:
Применяя формулу (6), находим
откуда
Пример №4
Решить уравнение
Решение:
При
получим квадратное уравнение
имеющее корни
Так как
то исходное уравнение равносильно уравнению
откуда находим
Ответ.
Пример №5
Решить уравнение
Решение:
Пусть
тогда
и уравнение примет вид
илиоткуда находим
Если то а если то
Ответ.
Пример №6
Решить уравнение
Решение:
Полагая получаем уравнение имеющее корни
Исходное уравнение равносильно совокупности уравнений
откуда находим две серии корней:
Пример №7
Решить уравнение
Решение:
Данное уравнение равносильно каждому из уравнений откуда
Пример №8
Решить уравнение
Решение:
Разделив обе части уравнения на , получим равносильное уравнение
имеющее корни ,
Исходное уравнение, равносильное совокупности уравнений
и имеет две серии корней:
Замечание. К уравнению вида (13) сводится уравнение
Для этого достаточно воспользоваться тождеством
Пример №9
Решить уравнение
Решение:
Это уравнение равносильно каждому из следующих уравнений :
Значит, исходное уравнение не имеет корней.
Пример №10
Решить уравнение
Решение:
Полагая преобразуем уравнение к виду
Разложив левую часть полученного уравнения на множители, приходим к уравнению
Если , то , откуда
Если то
откуда
Ответ.
Пример №11
Решить уравнение
Решение:
Полагая и используя формулу
преобразуем уравнение к виду или откуда
Следовательно, откуда
Ответ.
Пример №12
Решить уравнение
Решение:
Полагая и используя формулу получаем уравнение имеющее корни
Следовательно, откуда
Ответ.