Производная сложного логарифма: как найти по формуле

Виды логарифмов

Прежде, чем перейти к формулам производных, напомним, что для некоторых логарифмов предусмотрены отдельные названия:

  • Десятичный логарифм (lg x)

lg x = log10x

Т.е. это логарифм числа x основанию 10.

  • Натуральный логарифм (ln x)

ln x = loge x

Т.е. это логарифм числа x по основанию e (экспонента).

Основные свойства логарифмов

При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом Производная натурального логарифмаи любых положительных Производная натурального логарифмаи Производная натурального логарифмавыполняются равенства:

  • Производная натурального логарифма

Доказательство:

Вытекает из определения. Действительно Производная натурального логарифма

Например,

Производная натурального логарифма

Доказательство:

Вытекает из определения, Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифма
    (Логарифм произведения равен сумме логарифмов).

(4) Доказательство:

Воспользуемся основным логарифмическим тождеством: Производная натурального логарифма

Перемножая почленно эти равенства, получаем:

Производная натурального логарифма

т.е. Производная натурального логарифма
Следовательно, по определению логарифма Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифма
    (Логарифм частного равен разности логарифмов).

Доказательство:

Снова воспользуемся основным логарифмическим тождеством и получим:

Производная натурального логарифма

следовательно, но определению

Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифмадля любого действительного Производная натурального логарифма
    (Логарифм степени равен произведению показателя степени на логарифм основания этой степени). (6)

Доказательство:

Для доказательства воспользуемся тождеством Производная натурального логарифмаоткуда

Производная натурального логарифма

Следовательно, по определению

Производная натурального логарифма

Например,

Производная натурального логарифма

Пример 1. Вычислить Производная натурального логарифма

Применяя формулы (4)-(6), находим

Производная натурального логарифма
Основные свойства логарифмов широко применяются в ходе преобразования выражений, содержащих логарифмы.

Логарифмируя обе части основного логарифмического тождества но основанию Производная натурального логарифма
получаем

Производная натурального логарифмаили

Производная натурального логарифмагде Производная натурального логарифма

Эта формула называется формулой перехода от одного основания логарифма к другому. Докажем ее. Доказательство:

По правилу логарифмирования и основному логарифмическому тождеству получаем:

Производная натурального логарифма

Разделив обе части полученного равенства на Производная натурального логарифма
приходим к формуле (7).

Из формулы (7) при Производная натурального логарифмаимеем

Производная натурального логарифмагде Производная натурального логарифмаследует, что

Производная натурального логарифма

Например,

Производная натурального логарифма

Что такое производная и зачем она нужна

Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:

Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.

Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.

Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:


Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.

у = 10

у′ = 0

Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.

у = 10 + 3х

Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.

у = 10 + 3х

у′ = 0 + 3

у′ = 3

Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.

Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.

Применение логарифмической производной

Применять логарифмическую производную удобно в тех случаях, когда исходная функция состоит из произведения степенных или показательных функций. В этом случае операция логарифмирования превращает произведение функций в их сумму. Это упрощает вычисление производной.

Производные основных элементарных функций

Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.

Функция f (x)Производная f’ (х)

С (т. е. константа, любое число) 0
х 1
х2
xn n x xn-1
√x 1/(2√x)
1/x -1/x2
sin x cos x
cos x -sin x
tg x 1/cos2(X)
ctg x -1/sin2x
ex ex
ax ax * ln a
ln x 1/x
logax 1/(x * ln a)
arcsin x 1/(√1-x2)
arccos x -1/(√1-x2)
arctg x 1/(1+x2)
arcctg x -1/(1+x2)

Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.

Общая формула производной логарифма

Производная логарифма

Производная логарифма x по основанию a равняется числу 1, разделенному на произведение натурального логарифма a и числа x.

Общие правила дифференцирования

Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:

  1. (U + V)′ = U′ + V′
  2. (U — V)′ = U′ — V′
  3. (U × V)′ = U′V + V′U
  4. (U/V)’ = (U’V — V’U)/V2
  5. (C × F)′ = C × F′

В данном случае U, V, F — это функции, а C — константа (любое число).

Как видите, сложение и вычитание производных выполняется по правилам, которые знакомы нам еще из младших классов. С константой тоже все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.

Например: требуется найти производную функции y = (5 × x3).

y′ = (5 × x3)′

Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:

y′ = (5 × x3)’ = 5 × (x3)′ = 5 × 3 × х2 = 15х2

Правила дифференцирования сложных функций

Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2×2)4? Чтобы решить эту задачку, требуется:

  1. упростить выражение, используя замену переменной;
  2. применить правило дифференцирования сложных функций.

Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y)×y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.

Пример 1

Допустим, нам нужно найти производную от y = (3 + 2×2)4.

Заменим 3 + 2×2 на u и тогда получим y = u4.

Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:

y = y′u × u′x = 4u3 × u’x

А теперь выполним обратную замену и подставим исходное выражение:

4u3 × u′x = 4 (3 + 2×2)3 × (3 + 2×2)′ = 16 (3 + 2×2)3 × х

Пример 2

Найдем производную для функции y = (x3 + 4) cos x.

Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.

y′ = (x3 + 4)′ × cos x + (x3 + 4) × cos x′ = 3×2 × cos x + (x3 + 4) × (-sin x) = 3×2 × cos x – (x3 + 4) × sin x

Полная таблица производных

Зная правила дифференцирования сложных функций и руководствуясь указанными выше формулами, можно успешно решать задачи из школьной программы. Но существует также полная таблица производных сложных функций для студентов и инженеров. Мы не будем приводить все формулы из нее, но дадим небольшую шпаргалку, которая сделает сложные функции не такими уж сложными.

Это таблица производных некоторых функций, которые могут встретиться в экзаменационных задачах.

Функция f (x)Производная f’ (х)

(kx + b)c kc (kx + b)c-1
( f (x))c с x (f(х))c-1 x f'(х)
ekx+b kekx+b
ef(x) ef(x) x f'(х)
akx+b akx+b x ln a x k
sin (kx + b) k cos (kx + b)
sin ( f (x)) cos ( f (x)) x f'(х)
cos (kx + b) -k sin (kx + b)
cos ( f (x)) -sin( f (x)) x f'(х)
arctg (kx + b) 1/(1+(kx+b)2)
arctg ( f (x)) f'(x)/(1+(f(x))2)
arcctg (kx + b) -1/(1+(kx+b)2)
arcctg ( f (x)) -f'(x)/(1+(f(x))2)

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x0=x, где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f(x)=C. Составим запись предела отношения приращения функции к приращению аргумента при ∆x→0:

lim∆x→0∆f(x)∆x=lim∆x→0C-C∆x=lim∆x→00∆x=0

Обратите внимание, что под знак предела попадает выражение 0∆x. Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f(x)=C равна нулю на всей области определения.

Пример 1

Даны постоянные функции:

f1(x)=3,f2(x)=a, a∈R,f3(x)=4.13722,f4(x)=0,f5(x)=-87

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3. В следующем примере необходимо брать производную от а, где а — любое действительное число. Третий пример задает нам производную иррационального числа 4.13722, четвертый — производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби -87.

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f1′(x)=(3)’=0,f2′(x)=(a)’=0, a∈R,f3′(x)=4.13722’=0,f4′(x)=0’=0,f5′(x)=-87’=0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: (xp)’=p·xp-1, где показатель степени p является любым действительным числом.

Доказательство 2

Приведем доказательство формулы, когда показатель степени – натуральное число: p=1, 2, 3, …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

(xp)’=lim∆x→0=∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

(x+∆x)p-xp=Cp0+xp+Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…++Cpp-1·x·(∆x)p-1+Cpp·(∆x)p-xp==Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p

Таким образом:

(xp)’=lim∆x→0∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x==lim∆x→0(Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p)∆x==lim∆x→0(Cp1·xp-1+Cp2·xp-2·∆x+…+Cpp-1·x·(∆x)p-2+Cpp·(∆x)p-1)==Cp1·xp-1+0+0+…+0=p!1!·(p-1)!·xp-1=p·xp-1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p — любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x>0. Тогда: xp>0. Логарифмируем равенство y=xp по основанию e и применим свойство логарифма:

y=xpln y=ln xpln y=p·ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

(ln y)’=(p·ln x)1y·y’=p·1x⇒y’=p·yx=p·xpx=p·xp-1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x<0, причем является четной: y(x)=-y((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Тогда xp<0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x<0, причем является нечетной: y(x)=-y(-x)=-(-x)p. Тогда xp<0, а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y'(x)=(-(-x)p)’=-((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Последний переход возможен в силу того, что если p — нечетное число, то p-1 либо четное число, либо нуль (при p=1), поэтому, при отрицательных x верно равенство (-x)p-1=xp-1.

Итак, мы доказали формулу производной степенной функции при любом действительном p.

Пример 2

Даны функции:

f1(x)=1×23,f2(x)=x2-14,f3(x)=1xlog712

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y=xp, опираясь на свойства степени, а затем используем формулу:

f1(x)=1×23=x-23⇒f1′(x)=-23·x-23-1=-23·x-53f2′(x)=x2-14=2-14·x2-14-1=2-14·x2-54f3(x)=1xlog712=x-log712⇒f3′(x)=-log712·x-log712-1=-log712·x-log712-log77=-log712·x-log784

Нужна помощь преподавателя?Опиши задание — и наши эксперты тебе помогут!Описать задание

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

(ax)’=lim∆x→0ax+∆x-ax∆x=lim∆x→0ax(a∆x-1)∆x=ax·lim∆x→0a∆x-1∆x=00

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z=a∆x-1 (z→0 при ∆x→0). В таком случае a∆x=z+1⇒∆x=loga(z+1)=ln(z+1)ln a. Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

(ax)’=ax·lim∆x→0a∆x-1∆x=ax·ln a·lim∆x→011z·ln(z+1)==ax·ln a·lim∆x→01ln(z+1)1z=ax·ln a·1lnlim∆x→0(z+1)1z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

(ax)’=ax·ln a·1lnlimz→0(z+1)1z=ax·ln a·1ln e=ax·ln a

Пример 3

Даны показательные функции:

f1(x)=23x,f2(x)=53x,f3(x)=1(e)x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f1′(x)=23x’=23x·ln23=23x·(ln 2-ln 3)f2′(x)=53x’=53x·ln 513=13·53x·ln 5f3′(x)=1(e)x’=1ex’=1ex·ln1e=1ex·ln e-1=-1ex

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

(logax)’=lim∆x→0loga(x+∆x)-logax∆x=lim∆x→0logax+∆xx∆x==lim∆x→01∆x·loga1+∆xx=lim∆x→0loga1+∆xx1∆x==lim∆x→0loga1+∆xx1∆x·xx=lim∆x→01x·loga1+∆xxx∆x==1x·logalim∆x→01+∆xxx∆x=1x·logae=1x·ln eln a=1x·ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim∆x→01+∆xxx∆x=e является верным в соответствии со вторым замечательным пределом.

Пример 4

Заданы логарифмические функции:

f1(x)=logln3 x,f2(x)=ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f1′(x)=(logln3 x)’=1x·ln(ln 3);f2′(x)=(ln x)’=1x·ln e=1x

Итак, производная натурального логарифма есть единица, деленная на x.

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x

Формула разности синусов позволит нам произвести следующие действия:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x==lim∆x→02·sin x+∆x-x2·cosx+∆x+x2∆x==lim∆x→0sin ∆x2·cosx+∆x2∆x2==cosx+02·lim∆x→0sin ∆x2∆x2

Наконец, используем первый замечательный предел:

sin’ x=cos x+02·lim∆x→0sin∆x2∆x2=cos x

Итак, производной функции sin x будет cos x.

Совершенно также докажем формулу производной косинуса:

cos’ x=lim∆x→0cos (x+∆x)-cos x∆x==lim∆x→0-2·sin x+∆x-x2·sinx+∆x+x2∆x==-lim∆x→0sin∆x2·sinx+∆x2∆x2==-sinx+02·lim∆x→0sin∆x2∆x2=-sin x

Т.е. производной функции cos x будет –sin x.

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

tg’x=sin xcos x’=sin’ x·cos x-sin x·cos’ xcos2 x==cos x·cos x-sin x·(-sin x)cos2 x=sin2 x+cos2 xcos2 x=1cos2 xctg’x=cos xsin x’=cos’x·sin x-cos x·sin’xsin2 x==-sin x·sin x-cos x·cos xsin2 x=-sin2 x+cos2 xsin2 x=-1sin2 x

Производные обратных тригонометрических функций

Раздел о производной обратных функций дает исчерпывающую информацию о доказательстве формул производных арксинуса, арккосинуса, арктангенса и арккотангенса, поэтому дублировать материал здесь не будем.

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

sh’x=ex-e-x2’=12ex’-e-x’==12ex—e-x=ex+e-x2=chxch’x=ex+e-x2’=12ex’+e-x’==12ex+-e-x=ex-e-x2=shxth’x=shxchx’=sh’x·chx-shx·ch’xch2x=ch2x-sh2xch2x=1ch2xcth’x=chxshx’=ch’x·shx-chx·sh’xsh2x=sh2x-ch2xsh2x=-1sh2x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Оцените статью
Блог про прикладную математику