Производная произведения двух функций: чему равна по формуле

Что такое производная и зачем она нужна

Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:

Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.

Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.

Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:


Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.

у = 10

у′ = 0

Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.

у = 10 + 3х

Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.

у = 10 + 3х

у′ = 0 + 3

у′ = 3

Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.

Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.

Быстрее освоить производные поможет обучение на курсах по математике в онлайн-школе Skysmart.

Производные основных элементарных функций

Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.

Функция f (x)Производная f’ (х)

С (т. е. константа, любое число) 0
х 1
х2
xn n x xn-1
√x 1/(2√x)
1/x -1/x2
sin x cos x
cos x -sin x
tg x 1/cos2(X)
ctg x -1/sin2x
ex ex
ax ax * ln a
ln x 1/x
logax 1/(x * ln a)
arcsin x 1/(√1-x2)
arccos x -1/(√1-x2)
arctg x 1/(1+x2)
arcctg x -1/(1+x2)

Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.

Производные суммы, разности, произведения и деления функций.

Производные суммы, разности, произведения и деления функций
Производные суммы, разности, произведения и деления функций

Производные суммы, разности, произведения и деления функций
Производные суммы, разности, произведения и деления функций

Производные степенной, показательной и логарифмической сложных функций.

Производные степенной, показательной и логарифмической сложных функций
Производные степенной, показательной и логарифмической сложных функций

Производные степенной, показательной и логарифмической сложных функций
Производные степенной, показательной и логарифмической сложных функций

Производные степенной, показательной и логарифмической сложных функций
Производные степенной, показательной и логарифмической сложных функций

Общие правила дифференцирования

Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:

  1. (U + V)′ = U′ + V′
  2. (U — V)′ = U′ — V′
  3. (U × V)′ = U′V + V′U
  4. (U/V)’ = (U’V — V’U)/V2
  5. (C × F)′ = C × F′

В данном случае U, V, F — это функции, а C — константа (любое число).

Как видите, сложение и вычитание производных выполняется по правилам, которые знакомы нам еще из младших классов. С константой тоже все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.

Например: требуется найти производную функции y = (5 × x3).

y′ = (5 × x3)′

Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:

y′ = (5 × x3)’ = 5 × (x3)′ = 5 × 3 × х2 = 15х2

Правила дифференцирования сложных функций

Производные сложных тригонометрических функций
Производные сложных тригонометрических функций

Производные сложных тригонометрических функций
Производные сложных тригонометрических функций

Производные сложных тригонометрических функций

Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2×2)4? Чтобы решить эту задачку, требуется:

  1. упростить выражение, используя замену переменной;
  2. применить правило дифференцирования сложных функций.

Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y)×y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.

Как вынести постоянный множитель за знак производной

Определение 2

Для начала нам нужно доказать следующую формулу:

C·f(x)’=C·f'(x), C∈R

Доказательство 1

Используя определение производной, запишем следующее:

C·f(x)’=lim∆x→0∆(C·f(x))∆x=lim∆x→0C·f(x+∆x)-C·f(x)∆x==lim∆x→0C·f(x+∆x)-f(x)∆x=lim∆x→0C·∆f(x)∆x

Если в таком выражении у нас есть произвольный множитель, он может быть вынесен за знак предельного перехода (мы доказывали это утверждение, когда изучали свойства предела). Значит, C·f(x)’=lim∆x→0C·∆f(x)∆x=C·lim∆x→0∆f(x)∆x=C·f'(x).

Этим мы доказали первое правило дифференцирования. Разберем задачу на его применение.

Пример 1

Дана функция y=2·cos x. Необходимо вычислить ее производную.

Решение

Обратимся к таблице производных для тригонометрических функций и выясним, что cos x’=-sin x.

Вынесем множитель за знак производной и получим:

y’=2·cos x’=2·cos x’=-2·sin x

Ответ:y’=2·cos x’=2·cos x’=-2·sin x.

Это самый простой пример. На практике чаще всего приходится предварительно преобразовывать дифференцируемую функцию, чтобы увидеть нужное значение в таблице производных и применить соответствующее правило.

Пример 2

Продифференцировать функцию f(x)=log3x2-1.

Решение

Зная свойства логарифмической функции, мы можем сразу записать, что f(x)=log3x2-1=2-1·log3x. Теперь вспоминаем, как вычислить для нее производную, и выносим постоянный множитель:

f(x)=log3x2-1’=2-1·log3x’==2-1·log3x’=2-1x·ln 3

Ответ: f(x)=2-1x·ln 3

Пример 3

Дана функция y=12-x+3. Вычислите ее производную.

Решение

Сначала нам нужно выполнить преобразование исходной функции.

y=12-x+3=12-x·23=2×23

Далее применяем изученное выше правило и берем из таблицы производных соответствующее значение:

y’=2×23’=123·2x’=123·2x·ln 2=2x-3·ln 2

Ответ: y’=2x-3·ln 2

Как вычислить производную суммы и производную разности

Чтобы доказать второе правило дифференцирования f(x)±g(x)’=f'(x)±g'(x), нам нужно вспомнить определение производной, а также одно из свойств, которым обладает предел непрерывной функции.

Определение 3

f(x)±g(x)’=lim∆x→0∆(f(x)±g(x))∆x==lim∆x→0fx+∆x±gx+∆x-(f(x)±g(x))∆x==lim∆x→0f(x+∆x)-f(x)±(g(x+∆x)-g(x))∆x==lim∆x→0f(x+∆x)-f(x)∆x±lim∆x→0g(x+∆x)-g(x)∆x==lim∆x→0∆f(x)∆x±lim∆x→0∆g(x)∆x=f'(x)±g'(x)

Доказательство 2

Так мы можем доказать равенство производной суммы или разности n-ного количества функций сумме или разности их производных:

f1(x)±f2(x)±…±fn(x)’=f1′(x)±f2’±…±fn'(x)

Пример 4

Вычислить производную y=x3+3x+1-ln xln5+3.

Решение

Первым делом упрощаем данную функцию.

y=x3+3x+1-ln xln5+3=x3+3·3x-ln(5+3)·ln x

После этого применяем второе правило – производной суммы/разности:

y’=(x3)’+3·3x’-ln5+3·ln x’

Первое правило говорит нам о том, что можно вынести постоянный множитель за знак производной, значит:

y’=(x3)’+3·3x’-ln5+3·ln x’==(x3)’+3·3x’-ln(5+3)·ln x’

Нам остается только заглянуть в таблицу производных и взять оттуда соответствующее значение:

y’=(x3)’+3·3x’-ln(5+3)·ln x’==3·x3-1+3·3x·ln 3-ln5+3x=3·x2+3x+1·ln 3-ln(5+3)x

Ответ: y’=3·x2+3x+1·ln 3-ln(5+3)x

Как вычислить производную частного двух функций (дробного выражения с функциями)

Определение 5

Данное правило выглядит следующим образом: f(x)g(x)’=f'(x)·g(x)-f(x)·g'(x)g2(x).

Докажем его.

Доказательство 4

Сразу отметим, что g(x) не будет обращаться в 0 ни при каких значениях x из указанного промежутка. Согласно определению производной, получим:

f(x)g(x)’==lim∆x→0∆f(x)g(x)∆x=lim∆x→0f(x+∆x)g(x+∆x)-f(x)g(x)∆x=lim∆x→0f(x+∆x)·g(x)-g(x+∆x)·f(x)∆x·g(x+∆x)·g(x)==1g2(x)·lim∆x→0(f(x)+∆f(x))·g(x)-(g(x)+∆g(x))·f(x)∆x==1g2(x)·lim∆x→0f(x)·g(x)+g(x)·∆f(x)-f(x)·g(x)-f(x)·∆g(x)∆x==1g2(x)·lim∆x→0gx·∆f(x)-f(x)·∆g(x)∆x==1g2(x)·g(x)·lim∆x→0∆f(x)∆x-f(x)·lim∆x→0∆g(x)∆x==f'(x)·g(x)-f(x)·g'(x)g2(x)

Пример 9

Продифференцируйте функцию y=sin x2·x+1.

Решение

Эта функция является отношением двух выражений 2x+1 и sin x. Воспользуемся приведенным выше правилом дифференцирования дробного выражения и получим:

y’=sin x2·x+1’=sin x’·2·x+1-sin x·2·x+1’2·x+12

После этого нам потребуется правило для суммы, а также правило вынесения постоянного множителя за знак производной:

y’=sin x’·2·x+1-sin x·2·x+1’2·x+12==cos x·(2·x+1)-sin x·2x’+1′(2·x+1)2=cos x·(2·x+1)-sin x·(2·x’+0)(2·x+1)2==cos x·2·x+1-sin x·(2·1·x1-1+0)(2·x+1)2=2·x·cos x+cos x-2·sin x(2·x+1)2

Ответ: y’=2·x·cos x+cos x-2·sin x(2·x+1)2

Возьмем задачу на применение всех изученных правил.

Пример 10

Дана функция y=3ex-x2·ln x-2·xax+2sin x·arccos x, где значение undefined является положительным действительным числом. Вычислите производную.

Решение

y’=3·ex’-x2·ln x-2·xax’+2sin x·arccos x’

Поясним, как это получилось.

Первым слагаемым будет 3·ex’=3·ex’=3·ex.

Вычисляем второе:

x2·ln x-2·xax’=x2·ln x-2·x·ax-x2·ln x-2·x·ax’ax2==x2·ln x’-2·x’·ax-x2·ln x-2·x·ax·ln aa2·x==2·x2-1·ln x+x2·1x-2·1·x1-1·ax-x2·ln x-2·x·ax·ln aa2·x==2·x2-1·ln x+x2·1x-2·1·x1-1·ax-x2·ln x-2·x·ax·ln aa2·x==2·x·ln x+x-2·ax-x2·ln x-2·x·ax·ln aa2·x==x·ln x·(2-x·ln a)+x·1-2·ln a-2ax

Вычисляем третье слагаемое:

2sin x·arccos x’=2·sin x·arccos x’==2·sin x’·arccos x+sin x·arccos x’==2·cos x·arccos x-sin x1-x2

Теперь собираем все, что у нас получилось:

y’=3·ex’-x2·ln x-2·xax+2sin x·arccos x’==3·ex-x·ln x·(2-x·ln a)+x·1-2·ln a-2ax++2·cos x·arccos x-sin x1-x2

В задачах, которые мы разобрали в этой статье, использовались только основные элементарные функции, которые были связаны между собой знаками простых арифметических действий. Они нагляднее всего иллюстрируют правила дифференцирования. Однако возможно их применение и к более сложным функциям.

После того, как мы разберем, что такое производная сложной функции, мы сможете проводить дифференцирование выражений любой сложности.

Как вычислить производную произведения функций

Определение 4

Правило дифференцирования произведения двух функций выглядит следующим образом: fx·g(x)’=f'(x)·g(x)’+f(x)·g'(x)

Попробуем доказать его.

Доказательство 3

Для начала вычислим предел отношения приращения произведения функций к приращению аргумента. Здесь нужно вспомнить, что f(x+∆x)=f(x)+∆f(x), g(x+∆x)=g(x)+∆g(x), а lim∆x→0∆g(x)=0, lim∆x→0∆f(x)=0, то есть если приращение аргумента стремится к 0, то и приращение функции также будет к нему стремиться.

(f(x)·g(x))’=lim∆x→0∆(f(x)·g(x))∆x=lim∆x→0f(x+∆x)·g(x+∆x)-f(x)·g(x)∆x==lim∆x→0(f(x)+∆f(x))+(g(x)·∆g(x))-f(x)·g(x)∆x==lim∆x→0f(x)·g(x)+g(x)·∆f(x)+f(x)·∆g(x)+∆f(x)·∆g(x)-f(x)·g(x)∆x==lim∆x→0g(x)·∆f(x)+f(x)·∆g(x)+∆f(x)·∆g(x)∆x==lim∆x→0g(x)·∆f(x)∆x+lim∆x→0f(x)·∆g∆x+lim∆x→0∆f(x)∆x·lim∆x→0∆g(x)==g(x)·lim∆x→0∆f(x)∆x+f(x)·lim∆x→0∆g(x)∆x+f'(x)·0==f'(x)·g(x)+f(x)·g'(x)

Это и есть результат, который нам нужно было доказать.

Пример 5

Продифференцируйте функцию y=tg x·arcsin x.

Решение

Здесь f(x)=tg x, g(x)=arcsin x. Можем воспользоваться правилом производной произведения:

y’=(tg x·arcsin x)’=(tg x)’·arcsin x+tg x·(arcsin x)’

Берем нужное значение из таблицы производных основных элементарных функций и записываем ответ:

y’=(tg x·arcsin x)’=(tg x)’·arcsin x+tg x·(arcsin x)’==arcsin xcos2x+tg x1-x2

Ответ: y’=arcsin xcos2x+tg x1-x2

Нужна помощь преподавателя?Опиши задание — и наши эксперты тебе помогут!Описать задание Пример 6

Дана функция y=exx3. Вычислите производную.

Решение

Здесь мы имеем f(x)=ex, g(x)=1×3=x-13. Значит,

y’=exx3=ex·x-13’=ex’·x-13+ex·x-13==ex·x-13+ex·-13·x-13-1=exx3-exx43=exx3·1-1x

Ответ: y’=exx3·1-1x

Теперь разберем, что нужно делать в случае, когда производную нужно найти для произведения трех функций. По той же схеме решаются задачи с произведениями четырех, пяти и большего количества функций.

Пример 7

Продифференцируйте функцию y=(1+x)·sin x·ln x.

Решение

Возьмем за основу правило для двух функций. Будем считать функцией f(x) произведение (1+x)·sin x, а g(x) – ln x.

У нас получится следующее:

y’=((1+x)·sin x·ln x)’=1+x·sin x’·ln x+1+x·sin x·ln x’

Чтобы найти 1+x·sin x’, нам снова потребуется правило вычисления производной произведения:

1+x·sin x’=(1+x)’·sin x+1+x·(sin x)’

С помощью этого правила и таблицы производных получим:

1+x·sin x’=(1+x)’·sin x+1+x·(sin x)’==1’+x’·sin x+(1+x)·cos x=0+1·x1-1·sin x+(1+x)·cos x==(0+1)·sin x+1+x·cos x=sin x+cos x+x·cos x

Теперь подставим в формулу то, что у нас получилось:

y’=1+x·sin x·ln x’=1+x·sin x’·ln x+(1+x)·sin x·(ln x)’==sin x+cos x+x·cos x·ln x+(1+x)·sin xx

Ответ: y’=sin x+cos x+x·cos x·ln x+(1+x)·sin xx

Из этого примера видно, что иногда приходится применять несколько правил дифференцирования подряд для вычисления нужного результата. Это не так сложно, как кажется, главное – соблюдать нужную последовательность действий.

Пример 8

Дана функция y=2·sh x-2x·arctg x, вычислите ее производную.

Решение

Исходная функция является разностью выражений 2·sh x и 2x·arctg x, значит, y’=2·sh x-2x·arctg x’=2·sh x’-2x·arctg x’. Здесь можно вынести за знак производной число 2, а в другом произведении применить подходящее для произведений правило:

y’=2·sh x’-2x·arctg x’=2·sh x’-2x’·arctg x+2x·(arctg x)’==2·ch x-2x·ln 2·arctg x+2×1+x2=2·ch x-2x·ln 2·arctg x-2×1+x2

Ответ: y’=2·ch x-2x·ln 2·arctg x-2×1+x2

Пример 1

Допустим, нам нужно найти производную от y = (3 + 2×2)4.

Заменим 3 + 2×2 на u и тогда получим y = u4.

Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:

y = y′u × u′x = 4u3 × u’x

А теперь выполним обратную замену и подставим исходное выражение:

4u3 × u′x = 4 (3 + 2×2)3 × (3 + 2×2)′ = 16 (3 + 2×2)3 × х

Пример 2

Найдем производную для функции y = (x3 + 4) cos x.

Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.

y′ = (x3 + 4)′ × cos x + (x3 + 4) × cos x′ = 3×2 × cos x + (x3 + 4) × (-sin x) = 3×2 × cos x – (x3 + 4) × sin x

Правила вычисления производных

Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.

  •       Правило 1 (производная от произведения числа на функцию). Справедливо равенство(c f (x))’ = c f ‘ (x) ,где  c – любое число.

Другими словами, производная от произведения числа на функцию равна произведению этого числа на производную функции.

  •       Правило 2 (производная суммы функций). Производная суммы функций вычисляется по формуле

(f (x) + g (x))’ = f ‘ (x) + g’ (x),

то есть производная от суммы функций равна сумме производных этих функций.

  •       Правило 3 (производная разности функций). Производная разности функций вычисляется по формуле

(f (x) – g (x))’ = f ‘ (x) – g’ (x),

то есть производная от разности функций равна разности производных этих функций.

  •       Правило 4 (производная произведения двух функций). Производная произведения двух функций вычисляется по формуле

(f (x) g (x))’ =
=f ‘ (x) g (x) + f (x) g’ (x),

Другими словами, производная от произведения двух функций равна производной от первой функции, умноженной на вторую функцию, плюс первая функция, умноженная на производную от второй функции.

  •       Правило 5 (производная частного двух функций). Производная от дроби (частного двух функций) вычисляется по формуле

Определение. Рассмотрим функции   f (x)   и   g (x) .  Сложной функцией или «функцией от функции» называют функцию вида

f (g (x))

При этом функцию   f (x)   называют внешней функцией, а функцию   g (x)  – внутренней функцией.

  •       Правило 6 (производная сложной функции). Производная сложной функции вычисляется по формуле

[ f (g (x))]’ = f ‘ (g (x)) g’ (x)

Другими словами, для того, чтобы найти производную от сложной функции   f (g (x))   в точке   x   нужно умножить производную внешней функции, вычисленную в точке   g (x) ,   на производную внутренней функции, вычисленную в точке   x .

Полная таблица производных

Зная правила дифференцирования сложных функций и руководствуясь указанными выше формулами, можно успешно решать задачи из школьной программы. Но существует также полная таблица производных сложных функций для студентов и инженеров. Мы не будем приводить все формулы из нее, но дадим небольшую шпаргалку, которая сделает сложные функции не такими уж сложными.

Это таблица производных некоторых функций, которые могут встретиться в экзаменационных задачах.

Функция f (x)Производная f’ (х)

(kx + b)c kc (kx + b)c-1
( f (x))c с x (f(х))c-1 x f'(х)
ekx+b kekx+b
ef(x) ef(x) x f'(х)
akx+b akx+b x ln a x k
sin (kx + b) k cos (kx + b)
sin ( f (x)) cos ( f (x)) x f'(х)
cos (kx + b) -k sin (kx + b)
cos ( f (x)) -sin( f (x)) x f'(х)
arctg (kx + b) 1/(1+(kx+b)2)
arctg ( f (x)) f'(x)/(1+(f(x))2)
arcctg (kx + b) -1/(1+(kx+b)2)
arcctg ( f (x)) -f'(x)/(1+(f(x))2)

 

Производная частного. Нахождение и доказательство

Производная частного является произведением произведения производных числителя и знаменателя на произведение производных числителя и знаменателя, деленное на квадрат знаменателя.

Теорема 1:

Если функции Производная частногои Производная частногоимеют производные в точке Производная частного, то их произведениеПроизводная частноготакже имеет в этой точке производную, равную

Производная частного
(1)

Коротко равенство (1) записывают так:

Производная частного

Доказательство.

В точке Производная частногозададим приращение аргумента Производная частногои вычислим приращения функций Производная частногои Производная частного:

Производная частного
откуда

Производная частного. Теперь вычислим приращеиие функции Производная частного:

Производная частного

Тогда Производная частного

При Производная частногоимеемПроизводная частного, так как функция Производная частногов точке Производная частногоимеет производную, поэтому она в этой точке непрерывна (см, п. 4.3). ТогдаПроизводная частного

следовательно, в точке Производная частного
Производная частного

Теорема 1 доказана.

Примеры с решением

Пример 1

Производная частного

Пример 2

Найти Производная частного, если Производная частного

Решение:

Производная частного

Производная частного

Оцените статью
Блог про прикладную математику