Производная от логарифма: примеры и решения

Производная постоянной

Доказательство 1

Для того, чтобы вывести данную формулу, возьмем за основу определение производной функции в точке. Используем x0=x, где x принимает значение любого действительного числа, или, иначе говоря, x является любым числом из области определения функции f(x)=C. Составим запись предела отношения приращения функции к приращению аргумента при ∆x→0:

lim∆x→0∆f(x)∆x=lim∆x→0C-C∆x=lim∆x→00∆x=0

Обратите внимание, что под знак предела попадает выражение 0∆x. Оно не есть неопределенность «ноль делить на ноль», поскольку в числителе записана не бесконечно малая величина, а именно нуль. Иначе говоря, приращение постоянной функции всегда есть нуль.

Итак, производная постоянной функции f(x)=C равна нулю на всей области определения.

Пример 1

Даны постоянные функции:

f1(x)=3,f2(x)=a, a∈R,f3(x)=4.13722,f4(x)=0,f5(x)=-87

Необходимо найти их производные.

Решение

Опишем заданные условия. В первой функции мы видим производную натурального числа 3. В следующем примере необходимо брать производную от а, где а — любое действительное число. Третий пример задает нам производную иррационального числа 4.13722, четвертый — производную нуля (нуль – целое число). Наконец, в пятом случае имеем производную рациональной дроби -87.

Ответ: производные заданных функций есть нуль при любом действительном x (на всей области определения)

f1′(x)=(3)’=0,f2′(x)=(a)’=0, a∈R,f3′(x)=4.13722’=0,f4′(x)=0’=0,f5′(x)=-87’=0

Производная степенной функции

Переходим к степенной функции и формуле ее производной, имеющей вид: (xp)’=p·xp-1, где показатель степени p является любым действительным числом.

Доказательство 2

Приведем доказательство формулы, когда показатель степени – натуральное число: p=1, 2, 3, …

Вновь опираемся на определение производной. Составим запись предела отношения приращения степенной функции к приращению аргумента:

(xp)’=lim∆x→0=∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x

Чтобы упростить выражение в числителе, используем формулу бинома Ньютона:

(x+∆x)p-xp=Cp0+xp+Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…++Cpp-1·x·(∆x)p-1+Cpp·(∆x)p-xp==Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p

Таким образом:

(xp)’=lim∆x→0∆(xp)∆x=lim∆x→0(x+∆x)p-xp∆x==lim∆x→0(Cp1·xp-1·∆x+Cp2·xp-2·(∆x)2+…+Cpp-1·x·(∆x)p-1+Cpp·(∆x)p)∆x==lim∆x→0(Cp1·xp-1+Cp2·xp-2·∆x+…+Cpp-1·x·(∆x)p-2+Cpp·(∆x)p-1)==Cp1·xp-1+0+0+…+0=p!1!·(p-1)!·xp-1=p·xp-1

Так, мы доказали формулу производной степенной функции, когда показатель степени – натуральное число.

Доказательство 3

Чтобы привести доказательство для случая, когда p — любое действительное число, отличное от нуля, используем логарифмическую производную (здесь следует понимать отличие от производной логарифмической функции). Чтобы иметь более полное понимание желательно изучить производную логарифмической функции и дополнительно разобраться с производной неявно заданной функции и производной сложной функции.

Рассмотрим два случая: когда x положительны и когда x отрицательны.

Итак, x>0. Тогда: xp>0. Логарифмируем равенство y=xp по основанию e и применим свойство логарифма:

y=xpln y=ln xpln y=p·ln x

На данном этапе получили неявно заданную функцию. Определим ее производную:

(ln y)’=(p·ln x)1y·y’=p·1x⇒y’=p·yx=p·xpx=p·xp-1

Теперь рассматриваем случай, когда x – отрицательное число.

Если показатель p есть четное число, то степенная функция определяется и при x<0, причем является четной: y(x)=-y((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Тогда xp<0 и возможно составить доказательство, используя логарифмическую производную.

Если p есть нечетное число, тогда степенная функция определена и при x<0, причем является нечетной: y(x)=-y(-x)=-(-x)p. Тогда xp<0, а значит логарифмическую производную задействовать нельзя. В такой ситуации возможно взять за основу доказательства правила дифференцирования и правило нахождения производной сложной функции:

y'(x)=(-(-x)p)’=-((-x)p)’=-p·(-x)p-1·(-x)’==p·(-x)p-1=p·xp-1

Последний переход возможен в силу того, что если p — нечетное число, то p-1 либо четное число, либо нуль (при p=1), поэтому, при отрицательных x верно равенство (-x)p-1=xp-1.

Итак, мы доказали формулу производной степенной функции при любом действительном p.

Пример 2

Даны функции:

f1(x)=1×23,f2(x)=x2-14,f3(x)=1xlog712

Определите их производные.

Решение

Часть заданных функций преобразуем в табличный вид y=xp, опираясь на свойства степени, а затем используем формулу:

f1(x)=1×23=x-23⇒f1′(x)=-23·x-23-1=-23·x-53f2′(x)=x2-14=2-14·x2-14-1=2-14·x2-54f3(x)=1xlog712=x-log712⇒f3′(x)=-log712·x-log712-1=-log712·x-log712-log77=-log712·x-log784

Нужна помощь преподавателя?Опиши задание — и наши эксперты тебе помогут!Описать задание

Производная показательной функции

Доказательство 4

Выведем формулу производной, взяв за основу определение:

(ax)’=lim∆x→0ax+∆x-ax∆x=lim∆x→0ax(a∆x-1)∆x=ax·lim∆x→0a∆x-1∆x=00

Мы получили неопределенность. Чтобы раскрыть ее, запишем новую переменную z=a∆x-1 (z→0 при ∆x→0). В таком случае a∆x=z+1⇒∆x=loga(z+1)=ln(z+1)ln a. Для последнего перехода использована формула перехода к новому основанию логарифма.

Осуществим подстановку в исходный предел:

(ax)’=ax·lim∆x→0a∆x-1∆x=ax·ln a·lim∆x→011z·ln(z+1)==ax·ln a·lim∆x→01ln(z+1)1z=ax·ln a·1lnlim∆x→0(z+1)1z

Вспомним второй замечательный предел и тогда получим формулу производной показательной функции:

(ax)’=ax·ln a·1lnlimz→0(z+1)1z=ax·ln a·1ln e=ax·ln a

Пример 3

Даны показательные функции:

f1(x)=23x,f2(x)=53x,f3(x)=1(e)x

Необходимо найти их производные.

Решение

Используем формулу производной показательной функции и свойства логарифма:

f1′(x)=23x’=23x·ln23=23x·(ln 2-ln 3)f2′(x)=53x’=53x·ln 513=13·53x·ln 5f3′(x)=1(e)x’=1ex’=1ex·ln1e=1ex·ln e-1=-1ex

Производная логарифмической функции

Доказательство 5

Приведем доказательство формулы производной логарифмической функции для любых x в области определения и любых допустимых значениях основания а логарифма. Опираясь на определение производной, получим:

(logax)’=lim∆x→0loga(x+∆x)-logax∆x=lim∆x→0logax+∆xx∆x==lim∆x→01∆x·loga1+∆xx=lim∆x→0loga1+∆xx1∆x==lim∆x→0loga1+∆xx1∆x·xx=lim∆x→01x·loga1+∆xxx∆x==1x·logalim∆x→01+∆xxx∆x=1x·logae=1x·ln eln a=1x·ln a

Из указанной цепочки равенств видно, что преобразования строились на основе свойства логарифма. Равенство lim∆x→01+∆xxx∆x=e является верным в соответствии со вторым замечательным пределом.

Пример 4

Заданы логарифмические функции:

f1(x)=logln3 x,f2(x)=ln x

Необходимо вычислить их производные.

Решение

Применим выведенную формулу:

f1′(x)=(logln3 x)’=1x·ln(ln 3);f2′(x)=(ln x)’=1x·ln e=1x

Итак, производная натурального логарифма есть единица, деленная на x.

Виды логарифмов

Прежде, чем перейти к формулам производных, напомним, что для некоторых логарифмов предусмотрены отдельные названия:

  • Десятичный логарифм (lg x)

lg x = log10x

Т.е. это логарифм числа x основанию 10.

  • Натуральный логарифм (ln x)

ln x = loge x

Т.е. это логарифм числа x по основанию e (экспонента).

Основные свойства логарифмов

При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом Производная натурального логарифма
и любых положительных Производная натурального логарифма
и Производная натурального логарифма
выполняются равенства:

  • Производная натурального логарифма

Доказательство:

Вытекает из определения. Действительно Производная натурального логарифма

Например,

Производная натурального логарифма

Доказательство:

Вытекает из определения, Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифма
    (Логарифм произведения равен сумме логарифмов).

(4) Доказательство:

Воспользуемся основным логарифмическим тождеством: Производная натурального логарифма

Перемножая почленно эти равенства, получаем:

Производная натурального логарифма

т.е. Производная натурального логарифма
Следовательно, по определению логарифма Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифма
    (Логарифм частного равен разности логарифмов).

Доказательство:

Снова воспользуемся основным логарифмическим тождеством и получим:

Производная натурального логарифма

следовательно, но определению

Производная натурального логарифма

Например,

Производная натурального логарифма

  • Производная натурального логарифма
    для любого действительного Производная натурального логарифма
    (Логарифм степени равен произведению показателя степени на логарифм основания этой степени). (6)

Доказательство:

Для доказательства воспользуемся тождеством Производная натурального логарифма
откуда

Производная натурального логарифма

Следовательно, по определению

Производная натурального логарифма

Например,

Производная натурального логарифма

Пример 1. Вычислить Производная натурального логарифма

Применяя формулы (4)-(6), находим

Производная натурального логарифма
Основные свойства логарифмов широко применяются в ходе преобразования выражений, содержащих логарифмы.

Логарифмируя обе части основного логарифмического тождества но основанию Производная натурального логарифма
получаем

Производная натурального логарифма

илиПроизводная натурального логарифмагде Производная натурального логарифма

Эта формула называется формулой перехода от одного основания логарифма к другому. Докажем ее. Доказательство:

По правилу логарифмирования и основному логарифмическому тождеству получаем:

Производная натурального логарифма

Разделив обе части полученного равенства на Производная натурального логарифма
приходим к формуле (7).

Из формулы (7) при Производная натурального логарифма
имеем

Производная натурального логарифмагде Производная натурального логарифмаследует, что

Производная натурального логарифма

Например,

Производная натурального логарифма

Общая формула производной логарифма

Производная логарифма

Производная логарифма x по основанию a равняется числу 1, разделенному на произведение натурального логарифма a и числа x.

Производная натурального логарифма

Производная натурального логарифма

Производная от натурального логарифма числа x равняется единице, разделенной на x.

Данная формула получена следующим образом:

Производная натурального логарифма

Сокращение ln e в данном случае возможно благодаря свойству логарифма:

Свойство логарифма

Производная натурального логарифма сложной функции u = u (x):

Производная натурального логарифма сложной функции

Правила дифференцирования

1) производная суммы:
(u+v+...+w)'=u'+v'+...+w'
2) производная произведения:
(uv)'=u'v+v'u
3) производная частного:
(frac{u}{v})'=frac{u'v-v'u}{v^2}
4) производная сложной функции равна произведению производных:
y=f(u), u=phi(x), y'=f'(u)phi'(x)

Примеры задач

Задание 1:
Найдите производную функции y(x) = log4x.

Решение:
Используя общую формулу производной получаем:
Вычисление производной логарифма функции

Задание 2:
Вычислите производную функции y = ln x / 5.

Решение:
Применим свойство производной, согласно которой константу можно вынести за знак производной, и далее воспользуемся формулой для натурального логарифма:
Вычисление производной натурального логарифма

Производные тригонометрических функций

Доказательство 6

Используем некоторые тригонометрические формулы и первый замечательный предел, чтобы вывести формулу производной тригонометрической функции.

Согласно определению производной функции синуса, получим:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x

Формула разности синусов позволит нам произвести следующие действия:

(sin x)’=lim∆x→0sin (x+∆x)-sin x∆x==lim∆x→02·sin x+∆x-x2·cosx+∆x+x2∆x==lim∆x→0sin ∆x2·cosx+∆x2∆x2==cosx+02·lim∆x→0sin ∆x2∆x2

Наконец, используем первый замечательный предел:

sin’ x=cos x+02·lim∆x→0sin∆x2∆x2=cos x

Итак, производной функции sin x будет cos x.

Совершенно также докажем формулу производной косинуса:

cos’ x=lim∆x→0cos (x+∆x)-cos x∆x==lim∆x→0-2·sin x+∆x-x2·sinx+∆x+x2∆x==-lim∆x→0sin∆x2·sinx+∆x2∆x2==-sinx+02·lim∆x→0sin∆x2∆x2=-sin x

Т.е. производной функции cos x будет –sin x.

Формулы производных тангенса и котангенса выведем на основе правил дифференцирования:

tg’x=sin xcos x’=sin’ x·cos x-sin x·cos’ xcos2 x==cos x·cos x-sin x·(-sin x)cos2 x=sin2 x+cos2 xcos2 x=1cos2 xctg’x=cos xsin x’=cos’x·sin x-cos x·sin’xsin2 x==-sin x·sin x-cos x·cos xsin2 x=-sin2 x+cos2 xsin2 x=-1sin2 x

Производные гиперболических функций

Доказательство 7

Вывод формул производных гиперболического синуса, косинуса, тангенса и котангенса осуществим при помощи правила дифференцирования и формулы производной показательной функции:

sh’x=ex-e-x2’=12ex’-e-x’==12ex—e-x=ex+e-x2=chxch’x=ex+e-x2’=12ex’+e-x’==12ex+-e-x=ex-e-x2=shxth’x=shxchx’=sh’x·chx-shx·ch’xch2x=ch2x-sh2xch2x=1ch2xcth’x=chxshx’=ch’x·shx-chx·sh’xsh2x=sh2x-ch2xsh2x=-1sh2x

Рекомендуется выучить формулы из таблицы производных: они не столь сложны для запоминания, но экономят много времени, когда необходимо решать задачи дифференцирования.

Оцените статью
Блог про прикладную математику