Основные свойства производной: механические и геометрические

Что такое производная и зачем она нужна

Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:

Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.

Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.

Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:


Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.

у = 10

у′ = 0

Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.

у = 10 + 3х

Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.

у = 10 + 3х

у′ = 0 + 3

у′ = 3

Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.

Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

  • Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

  • Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

$k = tgα$

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

$f'(x_0) = k$

Следовательно, можем составить общее равенство:

$f'(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Решение:

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f'(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Решение:

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

Ответ: $2$

Производные основных элементарных функций

Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.

Функция f (x)Производная f’ (х)

С (т. е. константа, любое число) 0
х 1
х2
xn n x xn-1
√x 1/(2√x)
1/x -1/x2
sin x cos x
cos x -sin x
tg x 1/cos2(X)
ctg x -1/sin2x
ex ex
ax ax * ln a
ln x 1/x
logax 1/(x * ln a)
arcsin x 1/(√1-x2)
arccos x -1/(√1-x2)
arctg x 1/(1+x2)
arcctg x -1/(1+x2)

Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.

Производная сложной функции

Пусть функция y = f(x) имеет конечную производную в точке x0, функция z = s(y) имеет конечную производную в точке y0 = f(x0).

Тогда сложная функция z = s (f(x)) также имеет конечную производную в этой точке. Сказанное можно записать в виде:

Производная функции. Свойства производной..

Производная обратной функции

Пусть функция y = f(x) имеет обратную функцию x = g(y) на некотором интервале (a, b) и существует отличная от нуля конечная производная этой функции в точке x0, принадлежащая области определения , т.е. x0 ∈ (a, b).

Тогда обратная функция имеет производную в точке y0 = f(x0):

Производная функции. Свойства производной..

Производная неявной функции

Если функция y = f(x) задана неявно уравнением F(x, y(x)) = 0, то её производная находится из условия:

Производная функции. Свойства производной..

Говорят, что функция y = f(x) задана неявно, если она тождественно удовлетворяет соотношению:

F(x, y(x)) = 0,где F(x, y) — некоторая функция двух аргументов.

Производная функции, заданной параметрически

Если функция y = f(x) задана параметрическим образом с помощью рассмотренной системы уравнений :

Производная функции. Свойства производной.,

то её производная находится из условия:

Производная функции. Свойства производной..

Пусть величиныпеременные x и y являются функциями некоторой третьей переменной t:

Производная функции. Свойства производной.,

и при исключении t из соотношений данной системы уравнений переменную y можно выразить как функцию y = f(x) переменной x. В этом случае говорят, что функция f задаётся параметрическим способом.

Определение производной функции в точке

Когда функция вида f(x) определена из промежутка (a;b), тогда x0 и x0+∆x считаются точками данного промежутка. Производная функции f(x) в точке x0 — это предел отношений приращения функции к приращению аргумента, когда ∆x→0. Данное определение записывается как f'(x0)=lim∆x→0∆f(x)∆x.

Если последний предел принимает конкретное значение, тогда существует конечная производная в точке. Когда предел бесконечен, то и сама производная бесконечна в этой точке. Когда предел не существует, то и производной в заданной точке не существует.

Функция f(x) дифференцируема в точке x0, если конечная производная в ней существует.

Когда функция вида f(x) дифференцируема в каждой точке из промежутка (a;b), тогда функцию называют дифференцируемой на заданном промежутке. Отсюда получаем, что любая точка х из промежутка (a;b) может принимать значения функции f'(x), иначе говоря, имеет место определение новой функции вида f'(x), которая называется производной функции f(x) из интервала (a;b).

Общие правила дифференцирования

Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:

  1. (U + V)′ = U′ + V′
  2. (U — V)′ = U′ — V′
  3. (U × V)′ = U′V + V′U
  4. (U/V)’ = (U’V — V’U)/V2
  5. (C × F)′ = C × F′

В данном случае U, V, F — это функции, а C — константа (любое число).

Как видите, сложение и вычитание производных выполняется по правилам, которые знакомы нам еще из младших классов. С константой тоже все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.

Например: требуется найти производную функции y = (5 × x3).

y′ = (5 × x3)′

Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:

y′ = (5 × x3)’ = 5 × (x3)′ = 5 × 3 × х2 = 15х2

Правила дифференцирования сложных функций

Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2×2)4? Чтобы решить эту задачку, требуется:

  1. упростить выражение, используя замену переменной;
  2. ть правило дифференцирования сложных функций.

Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y)×y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.

Пример 1

Допустим, нам нужно найти производную от y = (3 + 2×2)4.

Заменим 3 + 2×2 на u и тогда получим y = u4.

Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:

y = y′u × u′x = 4u3 × u’x

А теперь выполним обратную замену и подставим исходное выражение:

4u3 × u′x = 4 (3 + 2×2)3 × (3 + 2×2)′ = 16 (3 + 2×2)3 × х

Пример 2

Найдем производную для функции y = (x3 + 4) cos x.

Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.

y′ = (x3 + 4)′ × cos x + (x3 + 4) × cos x′ = 3×2 × cos x + (x3 + 4) × (-sin x) = 3×2 × cos x – (x3 + 4) × sin x

Полная таблица производных

Зная правила дифференцирования сложных функций и руководствуясь указанными выше формулами, можно успешно решать задачи из школьной программы. Но существует также полная таблица производных сложных функций для студентов и инженеров. Мы не будем приводить все формулы из нее, но дадим небольшую шпаргалку, которая сделает сложные функции не такими уж сложными.

Это таблица производных некоторых функций, которые могут встретиться в экзаменационных задачах.

Функция f (x)Производная f’ (х)

(kx + b)c kc (kx + b)c-1
( f (x))c с x (f(х))c-1 x f'(х)
ekx+b kekx+b
ef(x) ef(x) x f'(х)
akx+b akx+b x ln a x k
sin (kx + b) k cos (kx + b)
sin ( f (x)) cos ( f (x)) x f'(х)
cos (kx + b) -k sin (kx + b)
cos ( f (x)) -sin( f (x)) x f'(х)
arctg (kx + b) 1/(1+(kx+b)2)
arctg ( f (x)) f'(x)/(1+(f(x))2)
arcctg (kx + b) -1/(1+(kx+b)2)
arcctg ( f (x)) -f'(x)/(1+(f(x))2)

Таблица производных простых и сложных функций

Теперь таблица производных для элементарных и для сложных функций.

Номер формулы Название производной Основные элементарные функции Сложные функции
1 Производная натурального логарифма по x (ln (x))' = frac{1}{x} (ln(u))' = frac{1}{u}u'
2 Производная логарифмической функции по основанию a displaystyle (log(x)_a)' = frac{1}{x cdot ln a} displaystyle (log(u)_a)' = frac{1}{u cdot ln a}u'
3 Производная по x в степени n (x^n)' = n x^{n-1} (u^n)' = n u^{n-1}u'
4 Производная квадратного корня (sqrt {x})' = frac{1}{2 sqrt{x}} (sqrt {u})' = frac{1}{2 sqrt{u}}u'
5 Производная a в степени x displaystyle (a^x)' = a^x cdot ln a displaystyle (a^u)' = a^u cdot ln u cdot u'
6 Производная e в степени x (e^x)' = e^x (e^u)' = e^u cdot u'
7 Производная синуса (sin {x})' = cos{x} (sin {u})' = cos{u} cdot u'
8 Производная косинуса (cos {x})' = -sin{x} (cos {u})' = -sin{u} cdot u'
9 Производная тангенса (tan {x})' = frac{1}{cos^2{x}} (tan {u})' = frac{1}{cos^2{u}} cdot u'
10 Производная котангенса (ctg {x})' = -frac{1}{sin^2{x}} (ctg {u})' = -frac{1}{sin^2{u}} cdot u'
11 Производная арксинуса (arcsin {x})' = frac{1}{sqr{1-x^2}} (arcsin {u})' = frac{u'}{sqr{1-u^2}}
12 Производная арккосинуса (arccos {x})' = -frac{1}{sqr{1-x^2}} (arccos {u})' = -frac{u'}{sqr{1-u^2}}
13 Производная арктангенса (arctg {x})' = frac{1}{1+x^2} (arctg {u})' = frac{u'}{1+u^2}
14 Производная арккотангенса (arcctg {x})' = -frac{1}{1+x^2} (arcctg {u})' = -frac{u'}{1+u^2}

Примеры нахождения производных

Пример 1

Пользуясь формулами и правилами дифференцирования, найти производную функции: y=x^2-5x+4.

Решение: y'=(x^2-5x+4)'=(x^2)'-(5x)'+(4)'

Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:

(x^2)'=2x
По формуле 3 «производная по x в степени n» (у нас в степени 2).

(5x)'=5
По правилам дифференцирования 3 и 4.

(4)'=0
По первому правилу дифференцирования «производная постоянной равна нулю»

Итак, получим: y'=2x-5.

Пример 2

Найти производную функции y=frac{2x}{3x+5}

Решение:

Находим производную, пользуясь правилам дифференцирования 6.

[y'=frac{(2x)'(3x+5)-2x(3x+5)'}{(3x+5)^2}]

[y'=frac{2(3x+5)-2x cdot 3}{(3x+5)^2}]

[y'=frac{6x+10-6x}{(3x+5)^2}]

[y'=frac{10}{(3x+5)^2}]

Ответ:

[y'=frac{10}{(3x+5)^2}]

Пример 3

Найти производную функции y=cosx

Решение: здесь все просто, мы возьмем производную из таблицы производных.

y'=-sin x

Ответ:y'=-sin x

Пример 4

Найдите производную функции y=cos(5x+7)

Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.

[y'=cos'(5x+7) cdot (5x+7)']

[y'=-sin(5x+7) cdot 5=-5sin(5x+7)]

Ответ:

[y'=-5sin(5x+7)]

Пример 5

Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции y=sqrt{2x^2+5x+4}

Решение: У нас сложная функция, так как под корнем стоит не просто x
, а квадратная функция.

То есть мы имеем функцию вида y=sqrt{u(x)}.

Возьмем производную этой функции:

[y'=frac{(2x^2+5x+4)'}{2 sqrt{2x^2+5x+4}}]

[y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Ответ:

[y'=frac{4x+5}{2 sqrt{2x^2+5x+4}}]

Пример 6

Найдите скорость тела, если траектория его движения задана уравнением x(t)=3t+4м

Решение: скорость тела — это первая производная траектории по времени: v(t)=x'(t). м/с.

Находим скорость тела:

[v(t)=(3t+4)']

[v(t)=3]

Ответ: 3 м/с.

Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.

Оцените статью
Блог про прикладную математику