- Что такое производная и зачем она нужна
- Физический смысл производной
- Геометрический смысл производной
- Производные основных элементарных функций
- Производная сложной функции
- Производная обратной функции
- Производная неявной функции
- Производная функции, заданной параметрически
- Определение производной функции в точке
- Общие правила дифференцирования
- Правила дифференцирования сложных функций
- Пример 1
- Пример 2
- Полная таблица производных
- Таблица производных простых и сложных функций
- Примеры нахождения производных
- Пример 1
- Пример 2
- Пример 3
- Пример 4
- Пример 5
- Пример 6
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
у = 10
у′ = 0
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
у = 10 + 3х
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1.
у = 10 + 3х
у′ = 0 + 3
у′ = 3
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Физический смысл производной
Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.
$v(t) = x'(t)$
Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?
Решение:
- Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции
$v(t) = x'(t) = 1,5·2t -3 = 3t -3$
- Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:
$3t-3 = 12$
$3t = 15$
$t = 5$
Ответ: $5$
Геометрический смысл производной
Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.
$k = tgα$
Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:
$f'(x_0) = k$
Следовательно, можем составить общее равенство:
$f'(x_0) = k = tgα$
На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.
На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.
На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.
На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.
Решение:
Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$
Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.
Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)
$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$
$f'(x_0) = tg ВАС = 0,25$
Ответ: $0,25$
Производная так же применяется для нахождения промежутков возрастания и убывания функции:
Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.
Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.
На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.
В ответ запишите количество данных точек.
Решение:
Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.
В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.
Ответ: $2$
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Приведем несколько формул, которых достаточно для решения большинства задач.
Функция f (x)Производная f’ (х)
С (т. е. константа, любое число) | 0 |
х | 1 |
х2 | 2х |
xn | n x xn-1 |
√x | 1/(2√x) |
1/x | -1/x2 |
sin x | cos x |
cos x | -sin x |
tg x | 1/cos2(X) |
ctg x | -1/sin2x |
ex | ex |
ax | ax * ln a |
ln x | 1/x |
logax | 1/(x * ln a) |
arcsin x | 1/(√1-x2) |
arccos x | -1/(√1-x2) |
arctg x | 1/(1+x2) |
arcctg x | -1/(1+x2) |
Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.
Производная сложной функции
Пусть функция y = f(x) имеет конечную производную в точке x0, функция z = s(y) имеет конечную производную в точке y0 = f(x0).
Тогда сложная функция z = s (f(x)) также имеет конечную производную в этой точке. Сказанное можно записать в виде:
.
Производная обратной функции
Пусть функция y = f(x) имеет обратную функцию x = g(y) на некотором интервале (a, b) и существует отличная от нуля конечная производная этой функции в точке x0, принадлежащая области определения , т.е. x0 ∈ (a, b).
Тогда обратная функция имеет производную в точке y0 = f(x0):
.
Производная неявной функции
Если функция y = f(x) задана неявно уравнением F(x, y(x)) = 0, то её производная находится из условия:
.
Говорят, что функция y = f(x) задана неявно, если она тождественно удовлетворяет соотношению:
F(x, y(x)) = 0,где F(x, y) — некоторая функция двух аргументов.
Производная функции, заданной параметрически
Если функция y = f(x) задана параметрическим образом с помощью рассмотренной системы уравнений :
,
то её производная находится из условия:
.
Пусть величиныпеременные x и y являются функциями некоторой третьей переменной t:
,
и при исключении t из соотношений данной системы уравнений переменную y можно выразить как функцию y = f(x) переменной x. В этом случае говорят, что функция f задаётся параметрическим способом.
Определение производной функции в точке
Когда функция вида f(x) определена из промежутка (a;b), тогда x0 и x0+∆x считаются точками данного промежутка. Производная функции f(x) в точке x0 — это предел отношений приращения функции к приращению аргумента, когда ∆x→0. Данное определение записывается как f'(x0)=lim∆x→0∆f(x)∆x.
Если последний предел принимает конкретное значение, тогда существует конечная производная в точке. Когда предел бесконечен, то и сама производная бесконечна в этой точке. Когда предел не существует, то и производной в заданной точке не существует.
Функция f(x) дифференцируема в точке x0, если конечная производная в ней существует.
Когда функция вида f(x) дифференцируема в каждой точке из промежутка (a;b), тогда функцию называют дифференцируемой на заданном промежутке. Отсюда получаем, что любая точка х из промежутка (a;b) может принимать значения функции f'(x), иначе говоря, имеет место определение новой функции вида f'(x), которая называется производной функции f(x) из интервала (a;b).
Общие правила дифференцирования
Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:
- (U + V)′ = U′ + V′
- (U — V)′ = U′ — V′
- (U × V)′ = U′V + V′U
- (U/V)’ = (U’V — V’U)/V2
- (C × F)′ = C × F′
В данном случае U, V, F — это функции, а C — константа (любое число).
Как видите, сложение и вычитание производных выполняется по правилам, которые знакомы нам еще из младших классов. С константой тоже все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.
Например: требуется найти производную функции y = (5 × x3).
y′ = (5 × x3)′
Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:
y′ = (5 × x3)’ = 5 × (x3)′ = 5 × 3 × х2 = 15х2
Правила дифференцирования сложных функций
Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2×2)4? Чтобы решить эту задачку, требуется:
- упростить выражение, используя замену переменной;
- ть правило дифференцирования сложных функций.
Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y)×y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.
Пример 1
Допустим, нам нужно найти производную от y = (3 + 2×2)4.
Заменим 3 + 2×2 на u и тогда получим y = u4.
Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:
y = y′u × u′x = 4u3 × u’x
А теперь выполним обратную замену и подставим исходное выражение:
4u3 × u′x = 4 (3 + 2×2)3 × (3 + 2×2)′ = 16 (3 + 2×2)3 × х
Пример 2
Найдем производную для функции y = (x3 + 4) cos x.
Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.
y′ = (x3 + 4)′ × cos x + (x3 + 4) × cos x′ = 3×2 × cos x + (x3 + 4) × (-sin x) = 3×2 × cos x – (x3 + 4) × sin x
Полная таблица производных
Зная правила дифференцирования сложных функций и руководствуясь указанными выше формулами, можно успешно решать задачи из школьной программы. Но существует также полная таблица производных сложных функций для студентов и инженеров. Мы не будем приводить все формулы из нее, но дадим небольшую шпаргалку, которая сделает сложные функции не такими уж сложными.
Это таблица производных некоторых функций, которые могут встретиться в экзаменационных задачах.
Функция f (x)Производная f’ (х)
(kx + b)c | kc (kx + b)c-1 |
( f (x))c | с x (f(х))c-1 x f'(х) |
ekx+b | kekx+b |
ef(x) | ef(x) x f'(х) |
akx+b | akx+b x ln a x k |
sin (kx + b) | k cos (kx + b) |
sin ( f (x)) | cos ( f (x)) x f'(х) |
cos (kx + b) | -k sin (kx + b) |
cos ( f (x)) | -sin( f (x)) x f'(х) |
arctg (kx + b) | 1/(1+(kx+b)2) |
arctg ( f (x)) | f'(x)/(1+(f(x))2) |
arcctg (kx + b) | -1/(1+(kx+b)2) |
arcctg ( f (x)) | -f'(x)/(1+(f(x))2) |
Таблица производных простых и сложных функций
Теперь таблица производных для элементарных и для сложных функций.
Номер формулы | Название производной | Основные элементарные функции | Сложные функции |
1 | Производная натурального логарифма по x | ||
2 | Производная логарифмической функции по основанию a | ||
3 | Производная по x в степени n | ||
4 | Производная квадратного корня | ||
5 | Производная a в степени x | ||
6 | Производная e в степени x | ||
7 | Производная синуса | ||
8 | Производная косинуса | ||
9 | Производная тангенса | ||
10 | Производная котангенса | ||
11 | Производная арксинуса | ||
12 | Производная арккосинуса | ||
13 | Производная арктангенса | ||
14 | Производная арккотангенса |
Примеры нахождения производных
Пример 1
Пользуясь формулами и правилами дифференцирования, найти производную функции: .
Решение:
Мы использовали правило 2 дифференцирования суммы. Теперь найдем производную каждого слагаемого:
По формуле 3 «производная по x в степени n» (у нас в степени 2).
По правилам дифференцирования 3 и 4.
По первому правилу дифференцирования «производная постоянной равна нулю»
Итак, получим: .
Пример 2
Найти производную функции
Решение:
Находим производную, пользуясь правилам дифференцирования 6.
Ответ:
Пример 3
Найти производную функции
Решение: здесь все просто, мы возьмем производную из таблицы производных.
Ответ:
Пример 4
Найдите производную функции
Решение: Здесь мы уже имеем не простую функцию, а сложную функцию и брать производную мы будем по формуле 8 таблицы производных для сложных функций.
Ответ:
Пример 5
Пользуясь правилами дифференцирования и таблицей производных, найдите производную функции
Решение: У нас сложная функция, так как под корнем стоит не просто
, а квадратная функция.
То есть мы имеем функцию вида .
Возьмем производную этой функции:
Ответ:
Пример 6
Найдите скорость тела, если траектория его движения задана уравнением м
Решение: скорость тела — это первая производная траектории по времени: . м/с.
Находим скорость тела:
Ответ: 3 м/с.
Итак, таблица производных и правила дифференцирования дают возможность легко брать производные и простых, и сложных функций.