- Что такое всемирное тяготение
- Природа силы всемирного тяготения
- История открытия закона всемирного тяготения
- Был ли Ньютон первооткрывателем?
- Гравитационное взаимодействие
- Закон всемирного тяготения. Формулы
- Сила тяжести
- Вес тела. Невесомость
- Ускорение свободного падения
- Искусственные спутники Земли
- Закон всемирного тяготения
- Задачка раз
- Задачка два
- Ускорение свободного падения
- Но разве это не зависит еще и от массы предмета?
- Третий закон Ньютона
- Задачка для практики
Что такое всемирное тяготение
Земля — это большой магнит, который притягивает к себе всё, что находится рядом: и карандаш, случайно выскользнувший из пальцев рук, и астероид, пролетающий мимо. С начала развития науки учёные давали своё видение и определение явлению всемирного тяготения, но только в 1687 году в фундаментальной работе Исаака Ньютона «Математические начала натуральной философии» было доказано его существование и воздействие на окружающие объекты.
математические начала натуральной философииИнтересный факт. Одно из первых изданий книги «Principia Mathematica» было продано на аукционных торгах за 3,7 миллиона долларов.
Основываясь на известные к тому времени эмпирические соотношения Иоганна Кеплера, описывающие гелиоцентрическую картину мира, Ньютон определил закон, согласно которому все тела притягиваются друг к другу.
гелиоцентрическая система мира
Причём сила взаимодействия растёт с увеличением массы и в то же время связана с расстоянием между объектами обратной квадратичной зависимостью, т.е.:
F = G∙(m1∙m2/ r2)
Несмотря на то, что объектами относительно небольшой массы данное явление практически не воспринимается, именно гравитация управляет движением астрономических тел, а формулировка закона позволяет объяснить, почему планеты движутся вокруг Солнца, а Луна – вокруг Земли.
Природа силы всемирного тяготения
Если важная роль гравитации в работе Вселенной понятна и неоспорима, то дать чёткий ответ на вопрос, откуда эта сила появляется, гораздо сложнее. В первой половине XX века Альберт Эйнштейн предложил специальную и общую теории относительности, в которых раскрыл своё видение природы всемирного тяготения.
Согласно учёному, пространство и время представляют собой пространственно-временной континуум – четырёхмерное пространство, одно из измерений которого – время. Но так как люди воспринимают окружающее их пространство и течение времени в отдельности друг от друга, то они видят лишь проекцию континуума. Эйнштейн предположил, что гравитация возникает вследствие того, что тела, обладающие массой, вызывают деформацию пространства при проецировании на него четырёхмерного континуума.
деформация пространства телом большой массы
Более понятной идея учёного будет выглядеть, если проиллюстрировать её с помощью двух шаров разной массы и обычного листа бумаги. Допустим, что лист держат за края в горизонтальном положении, а в его центр помещают один из шаров, более тяжёлый. Естественно, бумага прогнётся. Покатив по прямой линии лёгкий шарик, наблюдатель обнаружит, что его траектория является дугообразной, стремящейся к первому, более тяжёлому шару. Причём, с позиции шара меньшей массы, его движение продолжает быть прямолинейным. В этой иллюстрации и заключено упрощённое видение возникновения гравитации как явления.
История открытия закона всемирного тяготения
Существует легенда, согласно которой Ньютон, прогуливаясь по саду и наблюдая за луной, увидел, как падает на землю яблоко (в другой версии, это яблоко упало на голову учёного). В этот же момент он подумал, что, есть вероятность, что одна и та же сила удерживает спутник на небе и заставляет фрукты падать с веток деревьев. Эта догадка и послужила началом работы над законом притяжения.
Сегодня историки сомневаются в этом мифе, что вполне объяснимо, однако главным фактом в истории остаётся то, что Ньютон был первым учёным, который осознал, что тела на Земле и в космосе испытывают на себе воздействие одной и той же силы. До этого момента люди делили гравитацию на два типа: первый отвечал за земное, несовершенное взаимодействие, второй – за небесное, заставляющее планеты двигаться по круговым, совершенным, траекториям.
Ньютон математически связал гравитацию и соотношения движения планет, выведенные Кеплером, прекращая тем самым ложное разделение физических устоев Земли и остальной Вселенной.
Интересный факт: существует мнение, что Ньютон вывел закон всемирного тяготения гораздо раньше публикации «Начал». Однако известное на тот момент расстояние от Земли до Луны не подтверждало его теорию, но как только цифры были уточнены и исправлены, всё подтвердилось.
Был ли Ньютон первооткрывателем?
С момента публикации «Начал» многим ученым не нравилось, что Ньютон не объяснил физическую природу гравитации, не назвал ее источник, не привел доказательства. Некоторые ученые считали, что ученый промышляет плагиатом: мысль о том, что движение планет объясняется действием силы, которая притягивает каждую планету к Солнцу, уже высказывалась ранее, в том числе английским физиком Робертом Гуком — он даже сформулировал, что эта сила убывает обратно пропорционально квадрату расстояния от Солнца.
Свою теорию Гук изложил в том самом 1666 году, когда на Исаака упало яблоко, а в 1679 году посылал Ньютону письмо, где предлагал сотрудничать по решению этой задачи, но получил отказ и заверения о том, что эта тема давно не занимает адресата. В дальнейшем Гук требовал указывать его имя как первого автора закона тяготения и открыто обвинял Ньютона в плагиате. Ученые конфликтовали до конца жизни Гука, а спор о том, кто был первым, продолжался даже в XX веке.
«К сожалению, нам неизвестны детали того логического пути, которым Ньютон пришел к закону всемирного тяготения», — писали американские ученые в книге «Физика» в 1960 году.
«Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ», — писал советский ученый Сергей Вавилов. Ньютон был блестящим математиком и смог решить поставленную Гуком задачу.
Гравитационное взаимодействие
Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.
Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:
Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).
Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.
Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.
Закон всемирного тяготения. Формулы
В 1862 году был открыт закон всемирного тяготения И. Ньютоном. Он предположил, что силы, удерживающие Луну, той же природы, что и силы, заставляющие яблоко падать на Землю. Смысл гипотезы состоит в наличии действия сил притяжения, направленных по линии и соединяющих центры масс, как изображено на рисунке 1.10.1. Шаровидное тело имеет центр массы, совпадающий с центром шара.
Далее, Ньютон искал физическое объяснение законам движения планет, которые открыл И. Кеплер в начале XVII века, и давал количественное выражение для гравитационных сил.
При известных направлениях движений планет Ньютон пытался выяснить, какие силы действуют на них. Этот процесс получил название обратной задачи механики.
Основная задача механики – определение координат тела известной массы с его скоростью в любой момент времени при помощи известных сил, действующих на тело, и заданным условием (прямая задача). Обратная же выполняется с определением действующих сил на тело с известным его направлением. Такие задачи привели ученого к открытию определения закона всемирного тяготения.
Сила тяжести
Предположим, что тело находится вблизи некоторой планеты. Сила тяжести — это сила гравитационного притяжения, действующая на тело со стороны планеты. В подавляющем большинстве случаев сила тяжести — это сила притяжения к Земле.
Пусть тело массы
лежит на поверхности Земли. На тело действует сила тяжести
, где
— ускорение свободного падения вблизи поверхности Земли. С другой стороны, считая Землю однородным шаром, можно выразить силу тяжести по закону всемирного тяготения:
,
где
— масса Земли,
км — радиус Земли. Отсюда получаем формулу для ускорения свободного падения на поверхности Земли:
. (2)
Эта же формула, разумеется, позволяет найти ускорение свободного падения на поверхности любой планеты массы
и радиуса
.
Если тело находится на высоте
над поверхностью планеты, то для силы тяжести получаем:.
Здесь
— ускорение свободного падения на высоте.
В последнем равенстве мы воспользовались соотношением
которое следует из формулы (2).
Вес тела. Невесомость
Рассмотрим тело, находящееся в поле силы тяжести. Предположим, что есть опора или подвес, препятствующие свободному падению тела.Вес тела — это сила, с которой тело действует на опору или подвес. Подчеркнём, что вес приложен не к телу, а к опоре (подвесу).
![]() |
Рис. 1. Сила тяжести, реакция опоры и вес тела |
На рис. 1 изображено тело на опоре. Со стороны Земли на тело действует сила тяжести
(в случае однородного тела простой формы сила тяжести приложена в центре симметрии тела). Со стороны опоры на тело действует сила упругости
(так называемая реакция опоры). На опору со стороны тела действует сила
— вес тела. По третьему закону Ньютона силы
и
равны по модулю
и противоположны по направлению.
Предположим, что тело покоится. Тогда равнодействующая сил, приложенных к телу, равна нулю. Имеем:
С учётом равенства
получаем
. Стало быть, если тело покоится, то его вес равен по модулю силе тяжести.
Задача. Тело массы
вместе с опорой движется с ускорением
, направленным вертикально вверх. Найти вес тела.
Решение. Направим ось
вертикально вверх (рис. 2).
![]() |
Рис. 2. Вес тела больше силы тяжести. |
Запишем второй закон Ньютона:
Перейдём к проекциям на ось .
Отсюда
. Следовательно, вес тела.
Как видим, вес тела больше силы тяжести. Такое состояние называется перегрузкой.
Задача. Тело массы
вместе с опорой движется с ускорением
, направленным вертикально вниз. Найти вес тела.
Решение. Направим ось
вертикально вниз (рис. 3).
![]() |
Рис. 3. Вес тела меньше силы тяжести. |
Схема решения та же. Начинаем со второго закона Ньютона:
Переходим к проекциям на ось
Отсюда c. Следовательно, вес тела.
В данном случае вес тела меньше силы тяжести. При
(свободное падение тела с опорой) вес тела обращается в нуль. Это — состояние
невесомости, при котором тело вообще не давит на опору.
Ускорение свободного падения
Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.
F=Gm1m2r2.
Значение G определяет коэффициент пропорциональности всех тел в природе, называемое гравитационной постоянной и обозначаемое по формуле G=6,67·10-11 Н·м2/кг2 (СИ).
Большинство явлений в природе объясняются наличием действия силы всемирного тяготения. Движение планет, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все объясняется законом тяготения и динамики.
Проявлении силы тяготения характеризуется наличием силы тяжести. Так называется сила притяжения тел к Земле и вблизи ее поверхности.
Когда М обозначается как масса Земли, RЗ– радиус, m – масса тела, то формула силы тяжести принимает вид:
F=GMRЗ2m=mg.
Где g – ускорение свободного падения, равняющееся g=GMRЗ2.
Сила тяжести направлена к центру Земли, как показано в примере Луна-Земля. При отсутствии действия других сил тело движется с ускорением свободного падения. Его среднее значение равняется 9,81 м/с2. При известном G и радиусе R3=6,38·106 м производятся вычисления массы Земли М по формуле:
M=gR32G=5,98·1024 кг.
Если тело удаляется от поверхности Земли, тогда действие силы тяготения и ускорения свободного падения меняются обратно пропорционально квадрату расстояния r к центру. Рисунок 1.10.2 показывает, как изменяется сила тяготения, действующая на космонавта корабля, при удалении от Земли. Очевидно, что F притягивания его к Земле равняется 700 Н.
Пример 1
Земля-Луна подходит в качестве примера взаимодействия системы двух тел.
Расстояние до Луны – rЛ=3,84·106 м. Оно в 60 раз больше радиуса Земли RЗ. Значит, при наличии земного притяжения, ускорение свободного падения αЛ орбиты Луны составит αЛ=gRЗrЛ2=9,81 м/с2602=0,0027 м/с2.
Оно направлено к центру Земли и получило название центростремительного. Расчет производится по формуле aЛ=υ2rЛ=4π2rЛT2=0,0027 м/с2, где Т =27,3 суток – период обращения Луны вокруг Земли. Результаты и расчеты, выполненные разными способами, говорят о том, что Ньютон был прав в своем предположении единой природы силы, удерживающей Луну на орбите, и силы тяжести.
Луна имеет собственное гравитационное поле, которое определяет ускорение свободного падения gЛ на поверхности. Масса Луны в 81 раз меньше массы Земли, а радиус в 3,7 раза. Отсюда видно, что ускорение gЛ следует определять из выражения:
gЛ=GMЛRЛ2=GMЗ3,72T32=0,17 g=1,66 м/с2.
Такая слабая гравитация характерна для космонавтов, находящихся на Луне. Поэтому можно совершать огромные прыжки и шаги. Прыжок вверх на метр на Земле соответствует семиметровому на Луне.
Искусственные спутники Земли
Движение искусственных спутников зафиксировано за пределами земной атмосферы, поэтому на них оказывают действие силы тяготения Земли. Траектория космического тела может изменяться в зависимости от начальной скорости. Движение искусственного спутника по околоземной орбите приближенно принимается в качестве расстояния до центра Земли, равняющемуся радиусу RЗ. Они летают на высотах 200-300 км.
Отсюда следует, что центростремительное ускорение спутника, которое сообщается силами тяготения, равняется ускорению свободного падения g. Скорость спутника примет обозначение υ1. Ее называют первой космической скоростью.
Применив кинематическую формулу для центростремительного ускорения, получаем
an=υ12RЗ=g, υ1=gRЗ=7, 91·103 м/с.
При такой скорости спутник смог облететь Землю за время, равное T1=2πRЗυ1=84 мин 12 с.
Но период обращения спутника по круговой орбите вблизи Земли намного больше, чем указано выше, так как существует различие между радиусом реальной орбиты и радиусом Земли.
Спутник движется по принципу свободного падения, отдаленно похожее на траекторию снаряда или баллистической ракеты. Разница заключается в большой скорости спутника, причем радиус кривизны его траектории достигает длины радиуса Земли.
Спутники, которые движутся по круговым траекториям на больших расстояниях, имеют ослабленное земное притяжение, обратно пропорциональное квадрату радиуса r траектории. Тогда нахождение скорости спутника следует по условию:
υ2к=gR32r2, υ=gR3RЗr=υ1R3r.
Поэтому, наличие спутников на высоких орбитах говорит о меньшей скорости их движения, чем с околоземной орбиты. Формула периода обращения равняется:
T=2πrυ=2πrυ1rRЗ=2πRзυ1rR33/2=T12πRЗ.
T1 принимает значение периода обращения спутника по околоземной орбите. Т возрастает с размерами радиуса орбиты. Если r имеет значение 6,6 R3 то Т спутника равняется 24 часам. При его запуске в плоскости экватора, будет наблюдаться, как висит над некоторой точкой земной поверхности. Применение таких спутников известно в системе космической радиосвязи. Орбиту, имеющую радиус r=6,6 RЗ, называют геостационарной.
Рисунок 1.10.3.Модель движения спутников.
Закон всемирного тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F = G * (Mm/R2)
- F — сила тяготения [Н]
- M — масса первого тела (часто планеты) [кг]
- m — масса второго тела [кг]
- R — расстояние между телами [м]
- G — гравитационная постоянная
- G = 6,67 × 10-11м3·кг-1·с-2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей.
Задачка раз
Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?
Решение
По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:
По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1=2R2.
Это значит, что:
Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.
Задачка два
У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?
Решение
По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:
144 : 9 = 16 Н
Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.
Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F = mg
- F — сила тяжести [Н]
- m — масса тела [кг]
- g — ускорение свободного падения [м/с2]
- На планете Земля g = 9,8 м/с2, но подробнее об этом чуть позже.
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
F = mg
F = G * (Mm/R2)
Приравниваем правые части:
mg = G * (Mm/R2)
Делим на массу левую и правую части:
g = G * (M/R2)
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Закон всемирного тяготения
g = G * (M/R2)
- g — ускорение свободного падения [м/с2]
- M — масса планеты [кг]
- R — расстояние между телами [м]
- G — гравитационная постоянная
- G = 6,67 × 10-11м3·кг-1·с-2
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Но разве это не зависит еще и от массы предмета?
Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.
Третий закон Ньютона
Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.
Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.
Если попроще — сила действия равна силе противодействия.
Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила.
Третий закон Ньютона
- F1 — сила, с которой первое тело действует на второе [Н]
- F2 — сила, с которой второе тело действует на первое [Н]
Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.
Задачка для практики
Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?
Решение
Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.
Ответ: мяч притягивает Землю с силой 5 Н.
Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.
Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.