Формула радиоактивного распада: основные законы и измерение

Содержание
  1. Почему некоторые элементы радиоактивны?
  2. Вводим характеристики радиоактивности
  3. Радиоактивность
  4. Изотопы
  5. Радиоактивные превращения
  6. Разновидности излучения, свойства и характеристики
  7. Альфа-распад
  8. Бета-распад
  9. Гамма-распад
  10. «Цепочки» распада
  11. Деление ядер атомов
  12. Цепная реакция деления
  13. Характеристики радиоактивных превращений
  14. Единицы измерения в дозиметрии
  15. Доза
  16. Эффекты радиоактивности
  17. Радиационное воздействие
  18. Радиоактивное загрязнение
  19. Всегда ли радиоактивность вредна?
  20. Временной интервал в радиоактивности
  21. Что такое период полураспада?
  22. Таблица: «Полупериод распада отдельных изотопов»
  23. Пример определения для изотопа
  24. Закон радиоактивного распада (ЗРР)
  25. Следствия закона
  26. Границы применимости закона
  27. Время жизни атома
  28. Использование периода полураспада
  29. Цепочки радиоактивного превращения
  30. Самый дорогой металл
  31. Применение в энергетике
  32. Возраст Земли

Почему некоторые элементы радиоактивны?

Представьте, что вы случайно вдохнули пыльцу и ждете чиха. Держитесь за это чувство. Это то, что определенные атомы испытывают все время — стремление избавиться от лишнего и восстановить стабильность.

Все, что мы видим вокруг себя, в основном состоит из элементов со стабильными атомами (это означает, что ваш деревянный стол, насыщенный углеродом, сам по себе не распадется на что-то другое). Субатомный компонент, отвечающий за поддержание стабильности атома, — это его ядро.

Внутри ядра есть положительно заряженные протоны и нейтральные нейтроны. Эти «нуклоны» удерживаются вместе клеем, называемым сильным ядерным взаимодействием. Эта сильная сила нейтрализует отталкивающую электростатическую силу одинаково заряженных протонов и поддерживает стабильность ядра. Ядерная сила имеет короткий диапазон действия и зависит от соотношения нейтронов и протонов в ядре.

Однако мы видим, что баланс между силами начинает нарушаться, когда количество нейтронов превышает количество протонов. Пример: углерод-12 с 6 n и 6 p является стабильным изотопом, а углерод-14 имеет 8 n и 6 p, что делает его нестабильным изотопом. Или, возможно, ядро превышает пороговое количество нейтронов и протонов, которое сильная ядерная сила может комфортно удерживать вместе, например, любое ядро тяжелее Висмута-209. Эти сценарии приводят к появлению нестабильных изотопов элементов.

Подобно тому, как ваше тело посредством серии расширений и сокращений вытесняет раздражающее вещество во время чихания, нестабильные изотопы элементов выбрасывают различные частицы или формы энергии, чтобы восстановить баланс между силами в их ядрах. В процессе достижения стабильности они превращаются в новое ядро.

Это свойство превращения в нечто новое для достижения стабильности — то, что мы называем радиоактивностью, а процесс, посредством которого она преобразуется, называется радиоактивным распадом.

Вводим характеристики радиоактивности

Данный процесс – самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе радиоактивного распада, называют активность.

период полураспада атома зависит от
Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В СИ (Системе интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N – число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

название Что происходит Уравнение реакции
α –распад превращение атомного ядра Х в ядро Y с выделением ядра атома гелия ZАХ→Z-2YА-4+2He4
β — распад превращение атомного ядра Х в ядро Y с выделением электрона ZАХ→Z+1YА+-1eА
γ — распад не сопровождается изменением ядра, энергия выделяется в виде электромагнитной волны ZХА→ZXА+γ

Радиоактивность

Это способность ядер атомов различных химических элементов разрушаться, видоизменяться с испусканием атомных и субатомных частиц высоких энергий. При радиоактивных превращениях, в подавляющем большинстве случаев, ядра атомов (а значит, и сами атомы) одних химических элементов превращаются в ядра атомов (в атомы) других химических элементов, либо один изотоп химического элемента превращается в другой изотоп того же элемента.

Атомы, ядра которых подвержены радиоактивному распаду или другим радиоактивным превращениям, называются радиоактивными.

Изотопы

(от греческих слов isos – «равный, одинаковый» и topos – «место»)

Это нуклиды одного химического элемента, т.е. разновидности атомов определенного элемента, имеющие одинаковый атомный номер, но разные массовые числа.

Изотопы обладают ядрами с одинаковым числом протонов и различным числом нейтронов и занимают одно и то же место в периодической системе химических элементов. Различают стабильные изотопы, которые существуют в неизменном виде неопределенно долго, и нестабильные (радиоизотопы), которые со временем распадаются.

Известно около 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов.

Нуклид (от латинского nucleus – «ядро») – совокупность атомов с определенными значениями заряда ядра и массового числа.

Условные обозначения нуклида: Условное обозначение нуклеида
, где X – буквенное обозначение элемента, Z – число протонов (атомный номер), A – сумма числа протонов и нейтронов (массовое число).

Даже у самого первого в таблице Менделеева и самого лёгкого атома – водорода, в ядре которого только один протон (а вокруг него вращается один электрон), имеется три изотопа.

Таблица Менделеева

Таблица Менделеева

Радиоактивные превращения

Могут быть естественными, самопроизвольными (спонтанными) и искусственными. Спонтанные радиоактивные превращения – процесс случайный, статистический.

Все радиоактивные превращения сопровождаются, как правило, выделением из ядра атома избытка энергии в виде электромагнитного излучения.

Гамма-излучение – это поток гамма-квантов, обладающих большой энергией и проникающей способностью.

Рентгеновское излучение – это так же поток фотонов – обычно с меньшей энергией. Только «место рождения» рентгеновского излучения не ядро, а электронные оболочки. Основной поток рентгеновского излучения возникает в веществе при прохождении через него «радиоактивных частиц» («радиоактивного излучения» или «ионизирующего излучения»).

Основные разновидности радиоактивных превращений:

  • радиоактивный распад;
  • деление ядер атомов.

Это испускание, выбрасывание с огромными скоростями из ядер атомов «элементарных» (атомных, субатомных) частиц, которые принято называть радиоактивным (ионизирующим) излучением.

При распаде один изотоп данного химического элемента превращается в другой изотоп того же элемента.

Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета-минус-распад.

Названия «альфа» и «бета» были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений.

Для искусственных (техногенных) радионуклидов, кроме этого, характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход и др.).

Разновидности излучения, свойства и характеристики

Ученые выделили 3 вида излучения:

  • альфа-излучение (α) — поток ядер гелия (их называют альфа-частицами);
  • бета-излучение (β) — поток электронов;
  • гамма-излучение (γ) — электромагнитное излучение с большой проникающей способностью.

На основе излучения выделяют 3 основных типа радиоактивного распада:

  • альфа-распад;
  • бета-распад;
  • гамма-распад, или изомерный переход.

Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.

Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.

При этом некоторые изотопы могут одновременно испытывать более одного вида распада.

Альфа-распад

Это испускание из ядра атома альфа-частицы, которая состоит из 2 протонов и 2 нейтронов.

Альфа-частица имеет массу 4 единицы, заряд +2 и является ядром атома гелия (4He).

Альфа распад

Альфа распад

В результате испускания альфа-частицы образуется новый элемент, который в таблице Менделеева расположен на 2 клетки левее, так как количество протонов в ядре, а значит, и заряд ядра, и номер элемента стали на две единицы меньше. А масса образовавшегося изотопа оказывается на 4 единицы меньше.

Альфа–распад – это характерный вид радиоактивного распада для естественных радиоактивных элементов шестого и седьмого периодов таблицы Д.И. Менделеева (уран, торий и продукты их распада до висмута включительно) и особенно для искусственных – трансурановых – элементов.

То есть этому виду распада подвержены отдельные изотопы всех тяжёлых элементов, начиная с висмута.

Альфа-распад

Альфа распад

Так, например, при альфа-распаде урана всегда образуется торий, при альфа-распаде тория – радий, при распаде радия – радон, затем полоний и наконец – свинец. При этом из конкретного изотопа урана-238 образуется торий-234, затем радий-230, радон-226 и т. д.

Скорость альфа-частицы при вылете из ядра от 12 до 20 тыс. км/сек.

Бета-распад

Бета-распад – наиболее распространённый вид радиоактивного распада (и вообще радиоактивных превращений), особенно среди искусственных радионуклидов.

У каждого химического элемента есть, по крайней мере, один бета-активный, то есть подверженный бета-распаду изотоп.

Пример естественного бета-активного радионуклида – калий-40 (Т1/2=1,3×109 лет), в природной смеси изотопов калия его содержится всего 0,0119%.

Кроме К-40, значимыми естественными бета-активными радионуклидами являются также и все продукты распада урана и тория, т.е. все элементы от таллия до урана.

Бета-распад включает в себя такие виды радиоактивных превращений, как:

  • бета-минус распад;
  • бета-плюс распад;
  • К-захват (электронный захват).

Бета-минус распад – это испускание из ядра бета-минус частицы – электрона, который образовался в результате самопроизвольного превращения одного из нейтронов в протон и электрон.

При этом бета-частица со скоростью до 270 тыс. км/сек (9/10 скорости света) вылетает из ядра. И так как протонов в ядре стало на один больше, то ядро данного элемента превращается в ядро соседнего элемента справа – с большим номером.

Бета минус распад

Бета минус распад

При бета-минус распаде радиоактивный калий-40 превращается в стабильный кальций-40 (стоящий в соседней клетке справа). А радиоактивный кальций-47 – в стоящий справа от него скандий-47 (тоже радиоактивный), который, в свою очередь, также путём бета-минус распада превращается в стабильный титан-47.

Бета-плюс распад – испускание из ядра бета-плюс частицы – позитрона (положительно заряженного «электрона»), который образовался в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон.

В результате этого (так как протонов стало меньше) данный элемент превращается в соседний слева в таблице Менделеева.

Бета распад

Бета распад

Например, при бета-плюс распаде радиоактивный изотоп магния магний-23 превращается в стабильный изотоп натрия (стоящего слева) – натрий-23, а радиоактивный изотоп европия – европий-150 превращается в стабильный изотоп самария – самарий-150.

Гамма-распад

Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.

При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.

Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.

«Цепочки» распада

Цепочки распада

Цепочки распада

В результате радиоактивных превращений могут образовываться изотопы других химических элементов или того же элемента, которые сами могут быть радиоактивными элементами.

Т.е. распад некоего исходного радиоактивного изотопа может привести к некоторому количеству последовательных радио-активных превращений различных изотопов разных химических элементов, образуя т. н. «цепочки распада».

Например, торий-234, образующийся при альфа-распаде урана-238 превращается в протактиний-234, который в свою очередь снова в уран, но уже в другой изотоп – уран-234.

Заканчиваются же все эти альфа и бета-минус переходы образованием стабильного свинца-206. А уран-234 альфа-распадом – опять в торий (торий-230). Далее торий-230 путём альфа-распада – в радий-226, радий – в радон.

Деление ядер атомов

Это самопроизвольное, или под действием нейтронов, раскалывание ядра атома на 2 примерно равные части, на два «осколка».

При делении вылетают 2-3 лишних нейтрона и выделяется избыток энергии в виде гамма-квантов, гораздо больший, чем при радиоактивном распаде.

Если на один акт радиоактивного распада обычно приходится один гамма-квант, то на 1 акт деления приходится 8 -10 гамма-квантов!

Кроме того, разлетающиеся осколки обладают большой кинетической энергией (скоростью), которая переходит в тепловую.

Вылетевшие нейтроны могут вызвать деление двух-трёх аналогичных ядер, если те окажутся поблизости и если нейтроны попадут в них.

Таким образом, появляется возможность осуществления разветвляющейся, ускоряющейся цепной реакции деления ядер атомов с выделением огромного количества энергии.

Цепная реакция деления

Если позволить цепной реакции развиваться бесконтрольно, то произойдёт атомный (ядерный) взрыв.

Цепная реакция

Цепная реакция

Если цепную реакцию держать под контролем, управлять её развитием, не давать ускоряться и постоянно отводитьвыделяющуюся энергию (тепло), то эту энергию («атомную энергию») можно использовать для получения электроэнергии. Это осуществляется в атомных реакторах, на атомных электростанциях.

Характеристики радиоактивных превращений

Период полураспада (T1/2) – время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в 2 раза.

Периоды полураспада у всех радионуклидов разные – от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).

Активность – это количество актов распада (в общем случае актов радиоактивных, ядерных превращений) в единицу времени (как правило, в секунду). Единицами измерения активности являются беккерель и кюри.

Беккерель (Бк) – это один акт распада в секунду (1 расп./сек).

Кюри (Ки) – 3,7×1010 Бк (расп./сек).

Единица возникла исторически: такой активностью обладает 1 грамм радия-226 в равновесии с дочерними продуктами распада. Именно с радием-226 долгие годы работали лауреаты Нобелевской премии французские учёные супруги Пьер Кюри и Мария Склодовская-Кюри.

  • Закон радиоактивного распада

Изменение активности нуклида в источнике с течением времени зависит от периода полураспада данного нуклида по экспоненциальному закону:

Aи (t) = Aи (0) ×exp (-0,693 t / T1/2),

где Aи (0) – исходная активность нуклида;
Aи (t) – активность спустя время t;

T1/2 – период полураспада нуклида.

Зависимость между массойрадионуклида (без учета массы неактивного изотопа) и его активностью выражается следующим соотношением:

Зависимость между массой радионуклида

Зависимость между массой радионуклида

где mи – масса радионуклида, г;

  • T1/2 – период полураспада радионуклида, с;
  • Aи – активность радионуклида, Бк;
  • А – атомная масса радионуклида.
  • Проникающая способность радиоактивного излучения.

Пробег альфа-частиц зависит от начальной энергии и обычно колеблется в пределах от 3-х до 7 (редко до 13) см в воздухе, а в плотных средах составляет сотые доли мм (в стекле – 0,04 мм).

Альфа-излучение не пробивает лист бумаги и кожу человека. Из-за своей массы и заряда альфа-частицы обладают наибольшей ионизирующей способностью, они разрушают всё на своём пути, поэтому альфа-активные радионуклиды являются наиболее опасными для человека и животных при попадании внутрь.

Пробег бета-частиц в веществе из-за малой массы (~ в 7000 раз

Меньше массы альфа-частицы), заряда и размеров значительно больше. При этом путь бета-частицы в веществе не является прямолинейным. Проникающая способность также зависит от энергии.

Проникающая способность бета-частиц, образовавшихся при радиоактивном распаде, в воздухе достигает 2÷3 м, в воде и других жидкостях измеряется сантиметрами, в твёрдых телах – долями см.

В ткани организма бета-излучение проникает на глубину 1÷2 см.

  • Кратность ослабления n- и гамма-излучений.

Наиболее проникающими видами излучения являются нейтронное и гамма-излучение. Их пробег в воздухе может достигать десятков и сотен метров (также в зависимости от энергии), но при меньшей ионизирующей способности.

В качестве защиты от n- и гамма-излучения применяют толстые слои из бетона, свинца, стали и т. п. и речь ведут уже о кратности ослабления.

По отношению к изотопу кобальта-60 (Е = 1,17 и 1,33 Мэв) для 10-кратного ослабления гамма-излучения требуется защита из:

  • свинца толщиной порядка 5 см;
  • бетона около 33 см;
  • воды – 70 см.

Для 100-кратного ослабления гамма-излучения требуется защита из свинца толщиной 9,5 см; бетона – 55 см; воды – 115 см.

Единицы измерения в дозиметрии

Доза (от греческого – «доля, порция»)облучения.

Экспозиционная доза (для рентгеновского и гамма-излучения) – определяется по ионизации воздуха.

Единица измерения в системе СИ – «кулон на кг» (Кл/кг) – это такая экспозиционная доза рентгеновского или гамма-излучения, при создании которой в 1 кг сухого воздуха образуется заряд ионов одного знака, равный 1 Кл.

Внесистемной единицей измерения является «рентген».

1 Р = 2,58×10-4 Кл/кг.

По определению 1 рентген (1Р) – это такая экспозиционная доза при поглощении которой в 1 см3 сухого воздуха образуется 2,08×109 пар ионов.

Связь между двумя этими единицами следующая:

1 Кл/кг = 3,68 ·103 Р.

Экспозиционной дозе 1Р соответствует поглощенная доза в воздухе 0,88 рад.

Доза

Поглощённая доза – энергия ионизирующего излучения, поглощенная единичной массой вещества.

Под энергией излучения, переданной веществу, понимается разность между суммарной кинетической энергией всех частиц и фотонов, попавших в рассматриваемый объем вещества, и суммарной кинетической энергией всех частиц и фотонов, покидающих этот объем. Следовательно, поглощенная доза учитывает всю энергию ионизирующего излучения, оставленную в пределах этого объема, независимо от того, на что эта энергия потрачена.

Единицы измерения поглощенной дозы:

Грэй (Гр) – единица поглощённой дозы в системе единиц СИ. Соответствует энергии излучения в 1 Дж, поглощённой 1 кг вещества.

Рад – внесистемная единица поглощённой дозы. Соответствует энергии излучения 100 эрг, поглощённой веществом массой 1 грамм.

1 рад = 100 эрг/г = 0,01 Дж/кг = 0,01 Гр.

Биологический эффект при одинаковой поглощенной дозе оказывается различным для разных видов излучения.

Например, при одинаковой поглощенной дозе альфа-излучение оказывается гораздо опаснее, чем фотонное или бета-излучение. Это связано с тем, что альфа-частицы создают на пути своего пробега в биологической ткани более плотную ионизацию, концентрируя таким образом вредное воздействие на организм в определенном органе. При этом весь организм испытывает на себе значительно большее угнетающее действие излучения.

Следовательно, для создания одинакового биологического эффекта при облучении тяжелыми заряженными частицами необходима меньшая поглощенная доза, чем при облучении легкими частицами или фотонами.

Эквивалентная доза – произведение поглощенной дозы на коэффициент качества излучения.

Единицы измерения эквивалентной дозы:

Зиверт (Зв) – это единица измерения эквивалентной дозы, любого вида излучения, которое создает такой же биологический эффект, как и поглощенная доза в 1 Гр рентгеновского или гамма-излучения.

Следовательно, 1 Зв = 1 Дж/кг.

Бэр (внесистемная единица) – это такое количество энергии ионизирующего излучения, поглощенное 1 кг биологической ткани, при котором наблюдается тот же биологический эффект, что и при поглощенной дозе 1 рад рентгеновского или гамма-излучения.

1 бэр = 0,01 Зв = 100 эрг/г.

Наименование «бэр» образовано по первым буквам словосочетания «биологический эквивалент рентгена».

До недавнего времени при расчёте эквивалентной дозы использовались «коэффициенты качества излучения» (К) – поправочные коэффициенты, учитывающие различное влияние на биологические объекты (различную способность повреждать ткани организма) разных излучений при одной и той же поглощённой дозе.

Сейчас эти коэффициенты в Нормах радиационной безопасности (НРБ-99) назвали – «взвешивающие коэффициенты для отдельных видов излучения при расчёте эквивалентной дозы (WR)».

Их значения составляют соответственно:

  • рентгеновское, гамма, бета-излучение, электроны и позитроны – 1;
  • протоны с Е более 2 Мэв – 5;
  • нейтроны с Е менее 10 кэв) – 5;
  • нейтроны с Е от 10 кэв до 100 кэв – 10;
  • альфа-частицы, осколки деления, тяжёлые ядра – 20 и т. д.

Эффективная эквивалентная доза – эквивалентная доза, рассчитанная с учётом разной чувствительности различных тканей организма к облучению; равна эквивалентной дозе, полученной конкретным органом, тканью (с учётом их веса), умноженной на соответствующий «коэффициент радиационного риска».

Эти коэффициенты используются в радиационной защите для учёта различной чувствительности разных органов и тканей в возникновению стохастических эффектов от воздействия излучения.

В НРБ-99 их называют «взвешивающими коэффициентами для тканей и органов при расчёте эффективной дозы» .

Для организма в целом этот коэффициент принят равным 1, а для некоторых органов имеет следующие значения:

  • костный мозг (красный) – 0,12; Ÿ гонады (яичники, семенники) – 0,20;
  • щитовидная железа – 0,05; Ÿ кожа – 0,01 и т. д.
  • лёгкие, желудок, толстый кишечник – 0,12.

Для оценки полной эффективной эквивалентной дозы, полученной человеком, рассчитывают и суммируют указанные дозы для всех органов.

Для измерения эквивалентной и эффективной эквивалентной доз в системе СИ используется та же единица – Зиверт (Зв).

1 Зв равен эквивалентной дозе, при которой произведение вели-чины поглощённой дозы в Грэях (в биологической ткани) на взвешивающие коэффициенты будет равно 1 Дж/кг.

Иными словами, это такая поглощённая доза, при которой в 1 кг вещества выделяется энергия в 1 Дж.

Внесистемная единица – Бэр.

Взаимосвязь между единицами измерения:

1 Зв = 1 Гр * К = 1 Дж/кг * К = 100 рад * К = 100 бэр

При К=1 (для рентгеновского, гамма-, бета-излучений, электронов и позитронов) 1 Зв соответствует поглощённой дозе в 1 Гр:

1 Зв = 1 Гр = 1 Дж/кг = 100 рад = 100 бэр.

Ещё в 50-х годах было установлено, что если при экспозиционной дозе в 1 рентген воздух поглощает приблизительно столько же энергии, что и биологическая ткань.

Поэтому оказывается, что при оценке доз можно считать (с минимальной погрешностью), что экспозиционная доза в 1 рентген для биологической ткани соответствует (эквивалентна) поглощённой дозе в 1 рад и эквивалентной дозе в 1 бэр (при К=1), то есть, грубо говоря, что 1 Р, 1 рад и 1 бэр – это одно и то же.

При экспозиционной дозе 12 мкР/час за год получаем дозу 1 мЗв.

Кроме того, для оценки воздействия ИИ используют понятия:

  1. Мощность дозы – доза, полученная за единицу времени (сек., час).
  2. Фон – мощность экспозиционной дозы ионизирующего излучения в данном месте.
  3. Естественный фон – мощность экспозиционной дозы ионизирующего излучения, создаваемая всеми природными источниками ИИ.

Эффекты радиоактивности

Вредное воздействие радиоактивных веществ может повлиять на наш организм косвенно через радиационное облучение или напрямую через контакт или проглатывание.

Радиационное воздействие

В целом радиация не опасна. Свет, отражающийся от отражающей поверхности, микроволны, нагревающие нашу пищу, или сигналы, принимаемые нашими телефонами, — все это разные формы излучения, но есть один вид излучения, который особенно вреден для всех биологических форм — ионизирующее или ядерное излучение.

Радиоактивный материал в процессе распада испускает ионизирующее излучение, которое может легко превратить нейтральные атомы в положительно заряженные ионы, сбивая их электроны. Когда живое существо подвергается такому высокоэнергетическому излучению, оно не делает человека радиоактивным или сверхмощным, но делает его склонным к радиационному отравлению.

Радиационное отравление ядерным излучением может легко повредить молекулярную структуру ДНК и нанести вред живым клеткам. Тяжелая или продолжительная доза может оказаться смертельной, поскольку эти лучи являются канцерогенными.

Радиоактивное загрязнение

Поскольку радиоактивное вещество находится в непосредственном контакте с внутренней или внешней частью тела, такая форма проникновения увеличивает опасность в два раза. Оно не только подвергает организм воздействию радиационного отравления, но и вызывает внутренние повреждения, воздействуя на определенные части тела.

Наше тело принимает радиоактивный радий за кальций при приеме внутрь. Затем он продолжает заменять кальций в нашем организме радием, что приводит к некрозу костей и зубов. При попадании внутрь уран в основном поражает почки.

Всегда ли радиоактивность вредна?

В токсикологии есть поговорка, что «доза делает любую вещь не ядовитой». Хотя воздействие нерегулируемых количеств радиоактивного материала может вызвать серьезные генетические мутации и рак, при регулировании они также могут вылечить рак. Радиоактивный йод используется в лучевой терапии для лечения рака и для визуализации щитовидной железы. Радиоактивный технеций используется для обнаружения пороков сердца, костей и других органов.

Радиоактивный Углерод-14 используется в углеродном датировании, которое помогает нам определить возраст вещей, которые когда-то были живыми или состояли из биологического материала. В некоторых странах свежие продукты даже облучают перед упаковкой, чтобы убить любые микробы на поверхности фруктов и овощей. Крошечное количество америция-241 используется в сигнализаторах дыма, которые помогают спасать тысячи жизней каждый год.

Человечество и радиоактивность мирно сосуществовали на протяжении веков. Воздух, которым мы дышим, бананы в наших коктейлях и указатели выхода содержат радиоактивные элементы… но в безопасных количествах! Технически, мы тоже радиоактивны, так как в нашем организме есть очень незначительные количества радиоактивных изотопов калия и углерода. Радиоактивность есть повсюду, и жизнь навсегда остается в долгу перед ней за то, что она держит наше земное ядро поджаренным и обеспечивает нам защиту под уютным магнитным пузырьком.

Однако гипотетически, если вы в конечном итоге отправляетесь в поход в неизвестную страну, и счетчик Гейгера в вашей сумке начинает издавать громкий треск, вам, вероятно, следует просто начать бежать!

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

определение периода полураспада
Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название «период полураспада». В чем смысл введения этого понятия?

Что такое период полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада — это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название Обозначение Вид распада Период полураспада
Радий 88Ra219 альфа 0,001 секунд
Магний 12Mg27 бета 10 минут
Радон 86Rn222 альфа 3,8 суток
Кобальт 27Co60 бета, гамма 5,3 года
Радий 88Ra226 альфа, гамма 1620 лет
Уран 92U238 альфа, гамма 4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

период полураспада формула

  • Пусть N0 – количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.
  • К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N0/2.
  • По прошествии еще одного периода полураспада в образце остаются: N=N0/4=N0/22 активных атомов.
  • По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N0/8=N0/23.
  • К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N0/2n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.
  • ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N02-t/T½.

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A0•2-t/T. В этой формуле А0 – активность образца в начальный момент времени, А – активность по истечении t секунд, Т – период полураспада.

Масса вещества может быть использована в закономерности: m=m0•2-t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов – величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

что такое период полураспада

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T1/2/ln2= T1/2/0,693=1/ λ.

В этой записи τ – среднее время жизни, λ – постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Радиоуглеродный анализ ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

период полураспада это

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония — в зависимости от его изотопа — лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

период полураспада изотопа

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада — 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в цепной ядерной реакции, позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из урановой руды значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений «уран – торий», содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Оцените статью
Блог про прикладную математику