Дифференциальные уравнения Бернулли: как решать

Исследования учёного

Даниил Бернулли родился в Голландии в 1700 году. В 1725 году он начал работать на кафедре физиологии, где увлёкся основами теоретической физики. Через 25 лет он возглавил кафедру экспериментальной физики, которой и руководил до конца своих дней. Основным его трудом считается создание теории гидродинамической зависимости, известной как Закон Бернулли. Открытие учёного предвосхитило зарождение молекулярно-кинетического учения поведения газов.

Геометрический смысл уравнения бернулли

Причиной открытия принципа стало изучение действия закона сохранения энергии в различных ситуациях. Бернулли установил, что давление жидкости в замкнутом пространстве зависит от сечения объекта, в котором она находится. Чем меньше сечение трубы, тем ниже будет созданное давление в пропускаемом через неё жидком веществе.

Этот факт был доказан экспериментально и описан математически.

Правило в математической формулировке имеет вид (pv2/ 2) + p * g * h + ρ = const, где:

  • p — количество жидкости на единицу объёма;
  • v — скорость движения потока;
  • h — уровень, на который поднят элемент жидкости;
  • ρ — сила, действующая на единицу площади;
  • g — ускорение, придаваемое жидкости под действием притяжения Земли.

Равнение бернулли для потока реальной жидкости

Чтобы понять физический смысл уравнения Бернулли, нужно рассмотреть трубу переменного сечения, в которой существует точка А и Б. Первая располагается в широкой части, а вторая — в узкой. В соответствии с уравнением непрерывности скорость V1 в части трубы, имеющей большее сечение, будет меньше, чем скорость жидкости V2 в узком сечении. Если в жидкость поместить прибор для измерения давления, он покажет какое-то значение P1 в точке A и P2 в точке Б. При этом там, где скорость движения жидкости медленнее, давление будет больше.

Объясняется это следующим образом: если V1 больше V2, значит, при движении происходит изменение скорости течения. Представив, что в жидкости находится точка, можно утверждать о её движении с ускорением. Это означает, что на неё действуют силы.

Одна из них совпадает с направлением течения, тем самым ускоряя движение. Обусловлена эта сила разностью давления.

Так как движение происходит от точки А к Б, то и давление возле А будет больше, чем около Б. Эта разность давлений и приводит к ускорению.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие . При этом интерес представляет исход не каждого «отдельного испытания, а общее количество появлений события в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа появлений события в результате испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Схема Бернулли

Теория вероятностей имеет дело с такими экспериментами, которые можно повторять (по крайней мере теоретически) неограниченное число раз. Пусть некоторый эксперимент повторяется  раз, причем результаты каждого повторения не зависят от исходов предыдущих повторений. Такие серии повторений называют независимыми испытаниями. Частным случаем таких испытаний являются независимые испытания Бернулли, которые характеризуются двумя условиями:

  1. результатом каждого испытания является один из двух возможных исходов, называемых соответственно  «успехом» или «неудачей».
  2. вероятность «успеха»,  в каждом последующем испытании не зависит от результатов предыдущих испытаний и остается постоянной.

Схему испытаний Бернулли называют также биномиальной схемой, а соответствующие вероятности – биномиальными, что связано с использованием биномиальных коэффициентов .

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

  • Бросаем игральный кубик, где вероятности выпадения определенной цифры одинаковы в каждом броске.
  • Включаем лампы с заранее заданной одинаковой вероятностью выхода из строя каждой.
  • Лучник повторяет выстрелы по одной и той же мишени при условии, что вероятность удачного попадания при каждом выстреле принимается одинаковой.

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

  • Обозначим вероятность появления события А в единичном испытании буквой р, значит:
    p = P(A), а вероятность противоположного события (событие А не наступило) — буквой q
    q = P(¯A) = 1 — p.
  • Тогда вероятность того, что событие А появится в этих n испытаниях ровно k раз, выражается формулой Бернулли:
    Pn(k) = Cnk * pk * qn-k, где q = 1 — p.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Как рассуждаем:

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

np — q ≤ k ≤ np + p, где q=1−p

Так как np−q = np + p−1, то эти границы отличаются на 1. Поэтому k, являющееся целым числом, может принимать либо одно значение, когда np целое число (k = np), то есть когда np + p (а отсюда и np — q) нецелое число, либо два значения, когда np — q целое число.

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

Как решаем:

  • По условию дано: n = 730, p = 1/365, g = 364/365
  • np — g = 366/365
  • np + p = 731/365
  • 366/365 ≤ m ≤ 731/365
  • m = 2

Ответ: 2.

Условия действия

Закон применим для условия, при котором соблюдается неразрывность струи воздуха или жидкости. В тех участках потока, где скорость течения больше, давление будет меньше и наоборот. Это утверждение и называется теоремой Бернулли. По сути, закон позволяет установить связь между давлением, скоростью, высотой.

Уравнение бернулли для идеальной жидкости

Пусть имеется труба переменного сечения с изменяющейся высотой. Внизу она широкая, а затем сужается. По ней течёт жидкость. Площадь сечения можно обозначить как S1 и S2, а давление участков и скорость движения на них P1, P2, V1, V2. Высота внизу будет равняться S1, а вверху S2.

Выделив участок в трубе с жидкостью, можно сказать, что она движется слева направо и через некоторое время полностью сдвинется в область S2. Изменение положения слева будет равно расстоянию дельта L1, а справа — дельта L2.

Течение является:

  • ламинарным — находящаяся в трубке жидкость перемешивается слоями без хаотических изменений давления и скорости, турбулентность отсутствует;
  • стационарным — распределение скоростей не изменяется с течением времени;
  • скоростным — в движении принимает участие такой параметр, как ускорение;
  • идеальным с несжимаемой жидкостью.

Последнее обозначает, что нет вязкости. Поэтому на жидкость действует только сила упругости и тяжести, а силы трения нет. Система не является замкнутой, а значит закон сохранения энергии применительно к рассматриваемому участку использовать нельзя. Зато вполне можно применить теорему о кинетической энергии.

 физический смысл уравнения бернулли

Для газов уравнение можно использовать лишь в том случае, если их плотность изменяется незначительно. Но касаемо аэродинамики учитывается и то, что изменение давления воздуха гораздо меньше атмосферного. Поэтому уравнение можно применять в аэродинамических расчётах.

Согласно ему, сумма действующих всех сил на тело (рассматриваемый кусок жидкости) равняется изменению кинетической энергии объекта: ΣAi = ΔEk. На нижний участок действует сила давления, выполняющая положительную работу, а на верхний — отрицательную. Кроме этого, действует и сила тяжести. Так как жидкость поднимается, она имеет тоже отрицательный знак. Сила бокового давления перпендикулярна любой точке в системе, поэтому никакого влияния она не оказывает.

Приведение к линейному уравнению 1 порядка

Дифференциальное уравнение Бернулли записывается как y’+P(x)·y=Q(x)·yn. Если n=1, тогда его называют с разделяющими переменными. Тогда уравнение запишется как y’+P(x)·y=Q(x)·y⇔y’=Q(x)-P(x)·y.

Для того, чтобы решить такое уравнение, необходимо первоначально привести к линейному неоднородному дифференциальному уравнению 1 порядка с новой переменной вида z=y1-n. Проделав замену, получаем, что y=z11-n⇒y’=11-n·zn1-n·z’.

Отсюда вид уравнения Бернулли меняется:

y’+P(x)·y=Q(x)·yn11-n·z11-n·z’+P(x)·z11-n=Q(x)·z11-nz’+(1-n)·P(x)·z=(1-n)·Q(x)

Этот процесс вычисления и подстановки способствует приведению к линейному неоднородному дифференциальному уравнению первого порядка. В итоге проводим замену и получаем его решение.

Пример 1

Найти общее решение для уравнения вида y’+xy=(1+x)·e-x·y2.

Решение

По условию имеем, что n=2, P(x)=x, Q(x)=(1+x)·e-x. Необходимо ввести новую переменную z=y1-n=y1-2=1y, отсюда получим, что y=1z⇒y’=-z’z2.  Провести замену переменных и получить ЛНДУ первого порядка. Запишем, как

y’+xy=(1+x)·e-x·y2-z’z2+xz=(1+x)·e-x·1z2z’-xz=-(1+x)·e-x

Следует проводить решение при помощи метода вариации произвольной постоянной.

Проводим нахождение общего решения дифференциального уравнения вида:

dzdx-xz=0⇔dzz=xdx, z≠0∫dzz=∫xdxlnz+C1=x22+C2elnz+C1=ex22+C2z=C·ex22, C=eC2-C1

Где z=0, тогда решение дифференциального уравнения считается z’-xz=0, потому как тождество становится равным нулю при нулевой функции z. Данный случай записывается как z=C(x)·ex22, где С=0.  Отсюда имеем, что общим решением дифференциального уравнения z’-xz=0 считается выражение z=C·ex22 при С являющейся произвольной постоянной.

Необходимо варьировать переменную для того, чтобы  можно было принять
z=C(x)·ex22 как общее решение дифференциального уравнения вида z’-xz=-(1+x)·e-x.

Отсюда следует, что производится подстановка вида

C(x)·ex22′-x·C(x)·ex22=-(1+x)·e-xC'(x)·ex22+C(x)·ex22′-x·C(x)·ex22=-1+x·e-xC'(x)·ex22+C(x)·x·ex22-x·C(x)·ex22=-(1+x)·e-xC'(x)·ex22=-(1+x)·e-x22-xC(x)=∫-(1+x)·e-x22-xdx=∫e-x22-xd-x22-x=e-x2x-x+C3

С3принимает значение произвольной постоянной. Следовательно:

z=Cx·ex22=e-x22-x+C3·ex22=e-x+C3·ex22

Дальше производится обратная замена. Следует, что z=1y считается за y=1z=1e-x+C3·ex22.

Ответ: это решение считается решением исходного дифференциального уравнения Бернулли.

Представление произведением функций u ( x ) и v ( x )

Имеется другой метод решения дифференциального уравнения Бернулли, который основывается на том, что функцию представляют при помощи произведения функций u(x) и v(x).

Тогда получаем, что y’=(u·v)’=u’·v+u·v’. Производим подстановку в уравнение Бернулли y’+P(x)·y=Q(x)·yn и упростим выражение:

u’·v+u·v’+P(x)·u·v=Q(x)·u·vnu’·v+u·(v’+P(x)·v)=Q(x)·u·vn

Когда  в качестве функции берут  ненулевое частное решение дифференциального уравнения v’+P(x)·v=0, тогда придем к равенству такого вида

u’·v+u·(v’+P(x)·v)=Q(x)·(u·v)n⇔u’·v=Q(x)·(u·v)n.

Отсюда следует определить функцию u.

Пример 2

Решить задачу Коши 1+x2·y’+y=y2·arctg x, y(0) = 1.

Решение

Переходим к нахождению дифференциального уравнения вида 1+x2·y’=y·arctg x, которое удовлетворяет условию y(0)=1.

Обе части неравенства необходимо поделить на x2 + 1, после чего получим дифференциальное уравнение Бернулли y’+yx2+1=y2·arctg xx2+1.

Перейдем к поиску общего решения.

Принимаем y=u·v, отсюда получаем, что y’=u·v’=u’·v+u·v’ и уравнение запишем  в виде

y’+yx2+1=y2·arctg xx2+1u’·v+u·v’+u·vx2+1=u·v2·arctg xx2+1u’·v+u·v’+vx2+1=u2·v2·arctg xx2+1

Проведем поиск частного решения с наличием разделяющих переменных v’+vx2+1=0, отличных от нуля. Получим, что

dvv=-dxx2+1, v≠0∫dvv=-∫dxx2+1lnv+C1=-arctg x+C2v=C·e-arctg x, C=eC2-C1

В качестве частного решения необходимо брать выражение вида v=e-arcrg x. Преобразуем и получим, что

u’·v+u·v’+vx2+1=u2·v2·arcrg xx2+1u’·v+u·0=u2·v2·arctg xx2+1u’=u2·v·arctg xx2+1u’=u2·e-arctg x·arctg xx2+1⇔duu2=e-arctg x·arctg xx2+1dx, u≠0∫duu2=∫e-arctg x·arctg xx2+1dx∫duu2=∫e-arctg x·arctg x d(arctg x)

Имеем, что u=0 рассматривается как решение дифференциального уравнения. Далее необходимо решить каждый из полученных интегралов по отдельности.

Интеграл с левой стороны, имеющего вид ∫duu2, необходимо найти по таблице первообразных. Получаем, что

∫duu2=-1u+C3.

Чтобы найти интеграл вида ∫e-arctg x·arctg x d(arctg x), принимаем значение arctg x=z и применяем метод интегрирования по частям. Тогда имеем, что

∫e-arctg x·arctg x d(arctg x)=arctg x=z==∫e-z·z dz=u1=z, dv1=e-zdzdu1=dz, v1=-e-z==-z·e-z+∫e-zdz=-z·e-z-e-z+C4==-e-z·(z+1)+C4=-e-arctg x·(arctg x+1)+C4

Следовательно

-1u+C3=-e-arctg x·arctg x+1+C41u=e-arcrg x·arctg x+1+C3-C4u=1e-arcrg x·(arctg x+1)+C

Отсюда находим, что

y=u·v=e-arctg xe-arcrg x·(arctg x+1)+C и y=0·v=0·e-arcrg x=0 являются решениями дифференциального уравнения Бернулли вида y’+yx2+1=y2·arctg xx2+1.

На данном этапе следует переходить к поиску частного решения, которое удовлетворяет начальному условию. Получим, что

y=e-arctg xe-arctg x·arctg x+1+C, тогда запись примет вид y0=e-arctg 0e-arctg 0·arctg 0+1+C=11+C.

Очевидно, что 11+C=1⇔C=0. Тогда искомой задачей Коши будет являться полученное уравнение вида y=e-arctg xe-arctg x·arctg x+1+0=1arctg x+1.

Количественная сторона

Исходя из сил, действующих на тело, изменение кинетической энергии можно описать выражением: ΔEk = Ap1 +Ap2 +Ag. Чтобы найти работу, необходимо силу умножить на пройденное расстояние. Поэтому работа силы давления равна произведению самой силы F на модуль перемещения ΔL и косинусу угла между ними: Ap1 = F1* ΔL *1.

Чтобы найти силу, нужно давление умножить на площадь. Значит: Ap1 = p 1 * S1 * ΔL1 = p1V1. Таким же образом находится работа для второго состояния: Ap2 = F1* ΔL2 *(-1) = — p2 * S2 * ΔL2 = -p2 * V2. Жидкость несжимаемая, следовательно: V1=V2=V.

Физика и жидкости

Работу силы тяжести можно вычислить исходя из того, что рассматриваемый кусок жидкости является относительным, то есть он, хотя и не статический, в любом месте будет подвергаться воздействию одинаковой силы тяжести. Верным будет выражение: Ag = — ΔEp = — (m2 * g * h2 — m1 * g * h1) = m1 * g * h1 — m2 * g * h2. Так как жидкость несжимаемая, её плотность не изменится. Отсюда можно утверждать: Ag = ρ * V * g * h1 — ρ * V * g * h2.

Зная количественные показатели всех трёх работ, можно найти изменение кинетической энергии. Из физики известно, что оно равно разнице конечной и начальной энергии. Течение стационарное, значит, скорость с течением времени не изменится. Следовательно, кинетическая энергия будет определяться разницей появившейся энергии в верхней части и ушедшей из нижней области: ΔEk = (m2 * v22)/2 — (m1 * v12) / 2.

Воспользовавшись тем, что масса равняется произведению плотности на объём, формулу можно привести к виду: ΔEk = (ρ * V * v22)/2 — (ρ * V * v12) / 2. Теперь найденные выражения для работ нужно подставить в теорему о кинетической энергии. Получится следующее равенство: p1V — p2V + ρ * V * g * h1 — ρ * V * g * h2 = (ρ * V * v22) / 2 — (ρ * V * v12) / 2. Разделив левую и правую часть на объём, выражение можно упростить до вида: p1 — p2 + ρ * g * h1 — ρ * g * h2 = (ρ * v22)/2 — (ρ * v12) / 2 .

То место, где давление p1, некая точка внутри трубки, пусть будет обозначено цифрой один, а там, где p2, — цифрой два. Всё что относится к единице можно записать в левой части, а к двойке — в правой: ρ1 * g * h1 + (ρ * v12) / 2 = ρ * g * h2 + (ρ * v22) / 2. Полученная формула показывает, что при переходе в пределе одной линии скорость, давление и высота изменяются. Поэтому в любой точке будет справедливым выражение: ρ1+ ρ * g * h + (ρ * v1) / 2 = const. Это и есть количественное описание уравнения Бернулли для идеальной жидкости.

Применение в гидравлике

Наиболее типичным примером использования уравнения является решение заданий по нахождению скорости вытекания жидкости из отверстия в широком сосуде. Такой ёмкостью называют систему, в которой диаметр сосуда значительно больше размера отверстия. Необходимо найти скорость вытекающей жидкости U1. Известно, что высота столба жидкости, на который действует сила тяжести g, равна h.

Уравнение бернулли формула

Пусть в жидкости, находящейся сверху, имеется точка один. Через некоторое время она окажется внизу в положении два. На верх жидкости давит атмосферное давление, поэтому p1=pатм. Высота в точке один равна h. Скорость U1 считают равной нулю. Давление p2 в точке два будет также равно атмосферному. Так как жидкость опустится на дно, то высота h2 станет нулевой.

Все эти величины следует подставить в уравнение Бернулли. Получится выражение: pатм + ρ * g * h + 0 = pатм + (ρ * U2) / 2 + 0. Атмосферное давление взаимно уничтожается: ρ * g * h = (ρ * U2) / 2. В левой и правой части стоит плотность, на которую можно сократить. Отсюда получается, что вид жидкости значения не имеет. Это может быть: вода, ртуть, расплавленный металл. Эффект от этого не поменяется. Из формулы можно выразить искомое U2. Оно будет равно: U2 = (2 * g * h)½.

Интересным фактом является то, что полученный ответ при решении задачи называется формулой Торричелли. Она показывает, что скорость, с которой вытекает жидкость из широкого сосуда, равна скорости тела при свободном падении с той же высоты.

Используя уравнение, можно легко рассчитать давление жидкости на дно и стенки сосуда. В этом случае закон Бернулли является обобщением для формулы гидростатического давления. Пусть имеется сосуд с жидкостью высотой h. Точка, находящаяся наверху, характеризуется давлением p1 = pатм., высотой h1 равной h и скоростью U1. Для точки на дне параметры будут следующие: p2 = p, h2 = 0, U2 = 0. Скорости принимаются равными нулевому значению, так как рассматриваемая жидкость находится в состоянии покоя.

Данные следует подставить в уравнение. В итоге получится равенство: pатм + ρ * g * h + 0 = p + 0 + 0. Из него несложно найти неизвестное: p = pатм + ρ * g * h. Полученный ответ является формулой гидростатического давления и подтверждает закон Паскаля.

Аналогично уравнение Бернулли для потока реальной жидкости используется при расчёте расхода в карбюраторе, пульверизаторе, учёте статического и динамического давления.

Подъёмная сила

Самолёт летает благодаря тому, что набегающий на крыло напор воздуха создаёт подъёмную силу. Её можно рассчитать и оценить с помощью уравнения. Геометрически крыло можно представить в виде плоскости с углом a (угол атаки). На него действует поток воздуха со скоростью U. Частица воздуха ударяет в твёрдую поверхность и отражается от неё. Угол отражения равен углу атаки, а её скорость равняется U’. Нужно рассчитать подъёмную силу. Для этого необходимо выполнить три шага:

Уравнение бернулли эксперимент

  • рассмотреть изменение скорости воздуха;
  • узнать импульс частиц;
  • используя закон Ньютона, определить силу.

В результате получится, что на крыло действует сила, состоящая из двух компонентов: подъёмной силы Fy и аэродинамического сопротивления Fx. Fy = Cy * p * U2 * S, а Fx = Cx * p * U2 * S. В формулах С является коэффициентом, а S — площадью крыла.

Для расчёта используется уравнение Бернулли. Выглядеть оно будет следующим образом: Pп. к + (ρ * Uп. к) * 2 / 2 + ρ * g * hп. к = Pн. к + (ρ * Uн. к) * 2 / 2 + ρ * g * hн. к, где: п. к — под крылом, а н. к — над крылом. Это уравнение можно упростить, приняв, что давления над и под крылом примерно одинаковые, поэтому плотность будет также одинаковая. Кроме того, высота крыла довольно маленькая. Исходя из этого, формулу можно упростить, и она примет вид: pп. к-pн.к = (ρ * (Uн.к + Uп. к) * (Uн.к — Uп. к)) / 2 = 2 * U1 * U2. Теперь можно найти подъёмную силу. Для этого разность давлений нужно умножить на площадь крыла: Fy = (pп.к-pн. к) * S.

Таким образом, используя метод, можно рассчитать подъёмную силу, обусловленную эффектом Бернулли. Например, пусть дано, что площадь крыла равна 50 м². Скорость потока воздуха над крылом и под ним соответственно равны: U1 = 320 м/с, U2 = 290 м/с. Найти грузоподъёмность. Для решения задания нужно знать дифференциальную плотность воздуха. Это справочная величина, равная 1,29 кг/м3.

Используя уравнение Бернулли, можно записать: pп. к-pн.к = ρ * (U2н.к — U2п. к). Подъёмная сила равна площади крыла, умноженной на разность давления. Подставив одно выражение в другое, получим рабочую формулу: Fy = ρ * (U2н.к — U2п. к) * S / 2. После выполнения расчёта получится ответ 590 кН. То есть грузоподъёмность самолёта составит порядка 59 тонн.

Реальные вычисления для таких задач довольно сложные, поэтому часто используют онлайн-калькуляторы.

Оцените статью
Блог про прикладную математику