Асимптота графика функции: как правильно найти

Понятие асимптоты

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное.

Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

  1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.
  2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Классификация асимптот

  1. Вертикальные асимптоты.
  2. Горизонтальные асимптоты.
  3. Наклонные асимптоты.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy .

Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x) , если выполняется хотя бы одно из условий:

  • (предел функции при значении аргумента, стремящимся к некоторому значениюa слева, равен плюс или минус бесконечности)
  • (предел функции при значении аргумента, стремящимся к некоторому значениюa справа, равен плюс или минус бесконечности).

При этом функция f(x) может быть вообще не определена соответственно при x ≥ a и x ≤ a .

  • символом обозначается стремление x к a справа, причём x остаётся больше a;
  • символом обозначается стремление x к a слева, причём x остаётся меньше a.

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.

Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

Горизонтальные асимптоты

Первое, что нужно узнать о горизонтальных асимптотах: они параллельны оси Ox .

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b), то y = b – горизонтальная асимптота кривой y = f(x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении «икса» к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении «икса» к плюс бесконечности равен бесконечности:

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число — точка на оси абсцисс или ординат, через которую проходит асимптота.

Для наклонной асимптоты необходимо больше — угловой коэффициент k, который показывает угол наклона прямой, и свободный член b, который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё — уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом. Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f(x) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности.

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва.

Заключение: x = −1 — точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция — дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой — наклонной асимптоты:

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

На рисунке график функции обозначен бордовым цветом, а асимптоты — чёрным.

Пример. Найти асимптоты графика функции

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты.

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при.

Пример. Найти асимптоты графика функции

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство и при этом . Знак переменной x совпадает со знаком . Поэтому рассмотрим эквивалентное неравенство . Из этого получаем область определения функции: . Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при (левосторонний предел не существует).

Точка x = 2 — точка разрыва второго рода, поэтому прямая x = 2 — вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Итак, y = x + 1 — наклонная асимптота графика данной функции при . Ищем наклонную асимптоту при :

Итак, y = −x − 1 — наклонная асимптота при .

Пример. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при.

Оба предела нашли, используя первый замечательный предел. Заключение: x = 0 — точка устранимого разрыва, поэтому у графика функции нет вертикальных асимптот.

Ищем наклонные асимптоты:

Таким образом, при наклонной асимптотой графика данной функции является прямая y = x . Но при найденные пределы не изменяются. Поэтому при наклонной асимптотой графика данной функции также является y = x .

Пример. Найти асимптоты графика функции

Решение. Сначала найдём вертикальные асимптоты. Для этого найдём точки разрыва функции и их виды. Знаменатель не может быть равным нулю, поэтому должно соблюдаться условие . Функция имеет две точки разрыва: , . Чтобы установить вид разрыва, найдём односторонние пределы:

Так как все пределы равны бесконечности, обе точки разрыва — второго рода. Поэтому график данной функции имеет две вертикальные асимптоты: x = 2 и x = −2 .

Ищем наклонные асимптоты. Так как данная функция является дробно-рациональной, пределы при и при совпадают. Поэтому, определяя коэффициенты прямой, ищем просто пределы:

Подставляем найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты y = 2x . Таким образом, график данной функции имеет три асимптоты: x = 2 , x = −2 и y = 2x .

Часто задание на нахождение асимптот функции встречается в курсе математического анализа, в частности при решении задач на тему исследования функции. Для того, чтобы успешно ответить на вопрос: как найти асимптоты функции? необходимо уметь вычислять пределы, понимать что они собой представляют, знать основные методы решения пределов. Если всё это вы умеете на должном уровне, тогда найти асимптоты для вас не будет проблемой. Итак, что такое асимптота? Асимптота это линия, к которой бесконечно приближается ветвь графика функции. Чтобы было наглядно, посмотрите на изображения представленные ниже.

Обратите внимание, что соприкосновения между асимптотой и графиками нет, и не должно быть. Асимптота бесконечно приближается к графику функции. Давайте рассмотрим какие виды асимптоты функции бывают и как их находить, но о последнем будет рассказано далее.

Из таблицы узнаем, что асимптоты у функции бывают трех видов: вертикальные, горизонтальные, наклонные. Каждую найти асимптоту функции нужно по своему. Для этого нужны лимиты. Сколько бывает асимптот всего у функции? Ответ: ни одной, одна, две, три. и бесконечно много. У каждой функции по разному.

Как найти асимптоты графика функции

При исследовании поведения функции на бесконечности или вблизи точек разрыва часто оказывается, что расстояние между точками графика функции и точками некоторой прямой стремится к нулю при неограниченном удалении точек графика от начала координат. Прямая, к которой стремится кривая в бесконечно удаленной точке, называется асимптотой графика. Различают вертикальные и наклонные асимптоты.

Прямая Асимптоты графика функции с примерами решенияназывается вертикальной асимптотой графика функции y=f(x), если хотя бы один из односторонних пределов в точке Асимптоты графика функции с примерами решенияравен бесконечности: Асимптоты графика функции с примерами решенияТакие асимптоты существуют только в точках разрыва второго рода.

Непрерывные на множестве действительных чисел функции вертикальных асимптот на имеют.

Для того чтобы график функции y=f(x) имел наклонную асимптоту y=kx+b, необходимо и достаточно, чтобы существовали конечные пределы

Асимптоты графика функции с примерами решения

Частным случаем наклонной асимптоты (k=0) является горизонтальная асимптота.

Пример:

Найти асимптоты графика функции Асимптоты графика функции с примерами решения

Решение:

Функция Асимптоты графика функции с примерами решения
непрерывна в области определения Асимптоты графика функции с примерами решения
как элементарная. Следовательно, вертикальных асимптот нет. Найдем наклонные асимптоты y=kx+b:

Асимптоты графика функции с примерами решения

Получаем горизонтальную асимптоту y=0.

Вертикальные асимптоты

Чтобы найти данный вид асимптот необходимо найти область определения заданной функции и отметить точки разрыва. В этих точках предел функции будет равен бесконечности, а это значит, что функция в этой точке бесконечно приближается к линии асимптоты.

Горизонтальные асимптоты

Необходимо устремить аргумент лимита функции к бесконечности. Если предел существует и равен числу, то горизонтальная асимптота будет найдена и равна $ y=y_0 $ как показано во втором столбце таблицы

Наклонные асимптоты

Наклонная асимптота представляется в виде $ y = kx+b $. Где $ k $ — это коэффициент наклона асимптоты. Сначала находится коэффициент $ k $, затем $ b $. Если какой либо из них равен $ infty $, тогда наклонной асимптоты нет. А если $ b = 0 $, то получаем горизонтальную асимптоту. Так что для экономии времени лучше сразу находить наклонную асимптоту, а горизонтальная проявится сама собой в случае её существования.

Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))

  1. Шаг 1. Поиск вертикальных асимптот
    Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
  2. Шаг 2. Поиск горизонтальных асимптот
    Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
  3. Шаг 3. Поиск наклонных асимптот
    Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
    Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет.

На выходе: множество всех асимптот данной функции.

Итак, целесообразно провести следующие исследования:

  1. Уточнить область задания функции.
  2. Выяснить вопрос о существовании асимптот (вертикальных и наклонных).
  3. Найти области возрастания и убывания функции и точки экстремума.
  4. Найти области сохранения направления выпуклости и точки перегиба.
  5. Найти точки пересечения графика функции с осью Ох.

По полученным данным легко строится эскиз графика функции.

В качестве примера построим график функции

Асимптоты графика функции

Будем следовать изложенной выше схеме:

  • Поскольку функция (11.61) представляет собой рациональную дробь, то она определена и непрерывна всюду на бесконечной прямой, кроме точки х = 0, в которой обращается в нуль ее знаменатель.
  • Выясним вопрос о существовании асимптот. Очевидно, что

Асимптоты графика функции

поэтому график функции имеет вертикальную асимптоту х = 0. Далее, из существования пределов Асимптоты графика функции
вытекает, что и при Асимптоты графика функции
и при Асимптоты графика функции
график функции имеет наклонную асимптоту Асимптоты графика функции

  • Для нахождения областей возрастания и убывания функции (11.61) вычислим ее первую производную

Асимптоты графика функции
Имея в виду, кроме того, что сама функция и первая производная не существуют при Асимптоты графика функции
, мы получим следующие области сохранения знака Асимптоты графика функции<br>; Асимптоты графика функции

Из приведенной таблицы очевидно, что функция имеет следующие точки экстремума:

  1. максимум при х = -3, причем Асимптоты графика функции
  2. максимум при х= 1, причем Асимптоты графика функции
  3. минимум при х = 2, причем Асимптоты графика функции

Для нахождения областей сохранения направления выпуклости вычислим вторую производную Асимптоты графика функции

Имея в виду, что сама функция и ее производные не существуют в точке Асимптоты графика функции, мы получим следующие области сохранения знака Асимптоты графика функции:

Асимптоты графика функции
Из приведенной таблицы очевидно, что график функции имеет перегиб в точке Асимптоты графика функции
Легко подсчитать, что Асимптоты графика функции

Асимптоты графика функции
Остается найти точки пересечения графика с осью Асимптоты графика функции

Эти точки соответствуют вещественным корням уравнения

Асимптоты графика функции

Легко видеть, что Асимптоты графика функции
Поскольку квадратный трехчлен Асимптоты графика функции
имеет комплексные корни, то рассматриваемое уравнение имеет только один вещественный корень Асимптоты графика функции
так что граф

ик функции пересекает ось Асимптоты графика функции
в точке (1/2, 0). По полученным данным строим эскиз графика рассматриваемой функции (рис. 11.12). Асимптоты графика функции.

Прямая линия называется асимптотой графика функции Асимптоты графика функции
, если расстояние от точки А/, лежащей на графике, до этой прямой стремится к нулю при движении точки по графику в бесконечность.

Существует три вида асимптот: вертикальные, горизонтальные и наклонные.

Прямая Асимптоты графика функции
называется вертикальной асимптотой графика функции Асимптоты графика функции, если хотя бы одно из предельных значений Асимптоты графика функции
или Асимптоты графика функцииравно Асимптоты графика функции

Прямая Асимптоты графика функции называется горизонтальной асимптотой графика функции Асимптоты графика функции

Прямая Асимптоты графика функции называется наклонной асимптотой графика функцииАсимптоты графика функции
если функцию Асимптоты графика функции можно представить в виде Асимптоты графика функции при Асимптоты графика функции

Теорема. Для того чтобы график функции Асимптоты графика функции имел при Асимптоты графика функции наклонную асимптоту Асимптоты графика функции
необходимо и достаточно, чтобы существовали два предела:

Асимптоты графика функции

Примеры решений

Для начала решения найдем вертикальные асимптоты, но прежде найдем область определения функции $ f(x) $. По определению знаменатель не должен быть равен нулю. Поэтому имеем, $ 3x+2
eq 0; 3x
eq -2; x
eq -frac<2> <3>$. Получили точку разрыва $ x = -frac<2> <3>$. Вычислим в ней предел функции и убедимся окончательно, что вертикальная асимптота это $ x = -frac<2> <3>$.

Теперь найдем горизонтальные асимптоты, но прежде рассчитаем коэффициенты $ k $ и $ b $.

Так как $ k = 0 $, то мы уже понимаем то, что наклонных асимптот нет, а есть горизонтальные. Найдем теперь коэффициент $ b $.

Подставляем найденные коэффициенты в формулу $ y = kx + b $, получаем, что $ y = frac<5> <3>$ — горизонтальная асимптота.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Пример 1
Найти все асимптоты графика функции $$ f(x) = frac<5x> <3x+2>$$
Решение
Ответ
$$ y = frac<5> <3>$$

Найдем область определения данного примера, чтобы определить вертикальные асимптоты. $ 1-x
eq 0; x
eq 1; $. Точка разрыва $ x = 1 $, а это значит что это и есть вертикальная асимптота. Найдем для доказательства предположения предел в этой точке. $$ limlimits_ frac<1> <1-x>= frac<1> <0>= infty $$

Приступим к поиску наклонных асимптот.

Итого, $ y=0 $ — горизонтальная асимптота.

Пример 2
Найти все асимптоты графика функции $ f(x) = frac<1> <1-x>$
Решение
Ответ
$$ y=0 $$

Замечаем, что знаменатель не обращается в ноль при любом значении икса. А это значит, что нет точек разрыва и следовательно нет вертикальных асимптот. Остается найти горизонтальные асимптоты.

Так как $ k $ конечное число, не равное $ 0 $ или бесконечности, то существует наклонная асимптота. Вычислим недостающее число $ b $.

$ y =frac<1><3>x $ — наклонная асимптота к функции с углом наклона одна третья.

Пример 3
Найти все асимптоты графика функции $ f(x) = frac <3x^2+5>$
Решение
Ответ
$$ y =frac<1><3>x $$

Нет точек разрыва, а это значит, нет вертикальных асимптот.

$ y = 0 $ — горизонтальная асимптота

Пример 4
Найти асимптоты $ f(x) = xe^ <-x>$
Решение
Ответ
$$ y = 0 $$

Если в задачах даются элементарные функции, то заранее известно сколько и есть ли асимптоты. Например, у параболы, кубической параболы, синусоиды вообще нет никаких. У графиков функций таких как логарифмическая или экспоненциальная есть по одной. А у функций тангенса и котангенса бесчисленное множество асимптот, но арктангенс и арккатангенс имеет по две штуки.

Во всех приведенных примерах пределы вычислялись с помощью правило Лопиталя, которое очень ускоряет процесс вычисления и создает меньше ошибок.

Оцените статью
Блог про прикладную математику